中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
定義在R上的奇函數f(x)滿足:當x>0時,f(x)=2010x+log2010x,則方程f(x)=0的實根的個數為
3
3
分析:根據f(x)是R上的奇函數,則f(0)=0,當x>0時,函數f1(x)=2010x,f2(x)=-log2010x的圖象有一個交點,方程f(x)=0有唯一實數根,由奇函數的性質知,當x<0時,
也有唯一一個根使得f(x)=0,從而得到結論.
解答:解:當x>0時,令f(x)=0得,即2010x=-log2010x,
在同一坐標系下分別畫出函數f1(x)=2010x,f2(x)=-log2010x的圖象,
如右圖,可知兩個圖象只有一個交點,即方程f(x)=0只有一個實根,
∵f(x)是定義在R上的奇函數,
∴當x<0時,方程f(x)=0也有一個實根,
又∵f(0)=0,
∴方程f(x)=0的實根的個數為3.
故答案為 3.
點評:本題主要考查函數的奇偶性,函數的零點與方程的根的關系,體現了轉化、數形結合的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義在R上的奇函數f(x)滿足f(2x)=-2f(x),f(-1)=
1
2
,則f(2)的值為( 。
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的奇函數f(x)在(0,+∞)上是增函數,又f(-3)=0,則不等式xf(x)<0的解集為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的奇函數f(x)在[0,+∞)是增函數,判斷f(x)在(-∞,0)上的增減性,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的奇函數f(x),當x≥0時,f(x)=x3+x2,則f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步練習冊答案