如圖,
⊥平面
,
=90°,
,點
在
上,點E在BC上的射影為F,且
.![]()
(1)求證:
;
(2)若二面角
的大小為45°,求
的值.
![]()
(1)注意運用
,
,
,確定
,
通過
∽
,得到
; 證出
;
(2)
.
解析試題分析:![]()
解:(1)∵DC⊥平面ABC, ∴DC⊥BC
∵
,∴EF∥CD 1′
又∵
,
,所以
, 2′
∴
,
,
,∴
,
∴
∽
,∴
,即
; 5′
∵
,又
,于是
, 7′
(2)過F作
于G點,連GC
由
知
,可得
, 9′
所以
,所以
為F-AE-C的平面角,即
=45° 11′
設AC=1,則
,
,則在RT△AFE中
,
在RT△CFG中
=45°,則GF=CF,即
得到
. 14′
(注:若用其他正確的方法請酌情給分)
考點:本題主要考查立體幾何中的平行關系、垂直關系,距離與角的計算。
點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。“幾何法”的應用,要特別注意空間問題向平面問題轉化。
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
在如圖所示的四棱錐
中,已知 PA⊥平面ABCD,
,
,
,
為
的中點.![]()
(1)求證:MC∥平面PAD;
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角
的平面角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,菱形ABCD與矩形BDEF所在平面互相垂直,
.![]()
(1)求證:FC∥平面AED;
(2)若
,當二面角
為直二面角時,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=
,E、F分別為線段PD和BC的中點.![]()
(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ) 在線段BC上是否存在一點G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,
是邊長為
的正方形,
平面
,
,
,
與平面
所成角為
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)線段
上是否存在點
,使得
平面
?若存在,試確定點
的位置;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,在□ABCD中,∠DAB=60°,AB=2,AD="4." 將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD. ![]()
(1)求證:AB⊥DE;
(2)求三棱錐E—ABD的側面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com