中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知⊙C過點P(1,1),且與⊙M:關于直線x+y+2=0對稱.

(1)求⊙C的方程;

(2)設Q為⊙C上的一個動點,求的最小值;

(3)過點P作兩條相異直線分別與⊙C相交于A,B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OP和AB是否平行?請說明理由.

答案:
解析:

  解:(1)設圓心,則,解得  (2分)

  則圓的方程為,將點的坐標代入得

  故圓的方程為  (3分)

  (2)設,則,且  (4分)

  =,所以的最小值為(可由線性規劃或三角代換求得)  (6分)

  (3)由題意知,直線和直線的斜率存在,且互為相反數,故可設

  ,由,得  (7分)

  因為點的橫坐標一定是該方程的解,故可得  (8分)

  同理,

  所以

  所以,直線一定平行  (12分)


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知⊙C過點P(1,1),且與⊙M:(x+2)2+(y+2)2=r2(r>0)關于直線x+y+2=0對稱.
(Ⅰ)求⊙C的方程;
(Ⅱ)設Q為⊙C上的一個動點,求
PQ
MQ
的最小值;
(Ⅲ)過點P作兩條相異直線分別與⊙C相交于A,B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OP和AB是否平行?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知⊙C過點P(1,1),且與⊙M:(x+2)2+(y+2)2=r2(r>0)關于直線x+y+2=0對稱.
(1)求⊙C的方程;
(2)設Q為⊙C上的一個動點,求
PQ
MQ
的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知⊙C過點P(1,1),且與⊙M:(x+2)2+(y-2)2=r2(r>0)關于直線x+y+2=0對稱.
(1)設Q為⊙C上的一個動點,求
PQ
MQ
的最小值;
(2)過點P作兩條相異直線分別與⊙C相交于A,B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OP和AB是否平行?并說明理由.

查看答案和解析>>

科目:高中數學 來源:期末題 題型:解答題

已知⊙C過點P(1,1),且與⊙M:(x+2)2+(y+2)2=r2(r>0)關于直線x+y+2=0對稱.(Ⅰ)求⊙C的方程;
(Ⅱ)設Q為⊙C上的一個動點,求的最小值;
(Ⅲ)過點P作兩條相異直線分別與⊙C相交于A,B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OP和AB是否平行?請說明理由.

查看答案和解析>>

同步練習冊答案