中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設有關于x的一元二次方程x2+2ax+b2=0.
(Ⅰ)若a是從1,2,3,4四個數中任取的一個數,b是從1,2,3三個數中任取的一個數,求上述方程有實根的概率;
(Ⅱ)若a是從區間[1,4]任取的一個數,b是從區間[1,3]任取的一個數,求上述方程有實根的概率.
分析:(1)本題是一個古典概型,由分步計數原理知基本事件共12個,當a>0,b>0時,方程x2+2ax+b2=0有實根的充要條件為a≥b,滿足條件的事件中包含9個基本事件,由古典概型公式得到結果.
(2)本題是一個幾何概型,試驗的全部約束所構成的區域為{(a,b)|1≤a≤4,1≤b≤3}.構成事件A的區域為{(a,b)|1≤a≤4,1≤b≤3,a≥b}.根據幾何概型公式得到結果.
解答:解:設事件A為“方程a2+2ax+b2=0有實根”.
當a>0,b>0時,方程x2+2ax+b2=0有實根的充要條件為a≥b.
(Ⅰ)基本事件共12個:(1,1),(1,2),(1,3),(2,1),(2,2)(2,3),(3,1),(3,2),(3,3),(4,1),(4,2)(4,3),
其中第一個數表示a的取值,第二個數表示b的取值.事件A中包含9個基本事件,
事件A發生的概率為P(A)=
9
12
=
3
4

(Ⅱ)試驗的全部約束所構成的區域為{(a,b)|1≤a≤4,1≤b≤3}.
構成事件A的區域為{(a,b)|1≤a≤4,1≤b≤3,a≥b}.
所以所求的概率為=
3×2-
1
2
×22
3×2
=
2
3
點評:本題考查幾何概型和古典概型,放在一起的目的是把兩種概型加以比較,幾何概型和古典概型是高中必修中學習的高考時常以選擇和填空出現,有時文科會考這種類型的解答題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設有關于x的一元二次方程x2-2ax+b2=0.
(1)若a是從0、1、2、3四個數中任取的一個數,b是從0、1、2三個數中任取的一個數,求上述方程沒有實根的概率.
(2)若a是從區間[0,3]內任取的一個數,b=2,求上述方程沒有實根的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

設有關于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數中任取的一個數,b是從0,1,2三個數中任取的一個數,求方程有實根的概率.
(2)若a是從區間[0,t+1]任取的一個數,b是從區間[0,t]任取的一個數,其中t滿足2≤t≤3,求方程有實根的概率,并求出其概率的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設有關于x的一元二次方程x2+2ax+b2=0.
(1)將一顆質地均勻的正方體骰子(六個面的點數分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現的點數為a,第二次出現的點數為b.求上述方程有實根的概率;
(2)若a是從區間[0,3]任取的一個數,b是從區間[0,2]任取的一個數,求上述方程有實根的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

設有關于x的一元二次方程x2+2ax+b2=0.若a是從0,1,2,3四個數中任取的一個數,b是從0,1,2三個數中任取的一個數,則上述方程有實根的概率為
3
4
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•河北區一模)設有關于x的一元二次方程x2+ax+b2=0
(Ⅰ)若a是從1,2,3,4,5五個數中任取的一個數,b是從0,1,2三個數中任取的一個數,求上述方程有實根的概率;
(Ⅱ)若a是從區間[1,5]任取的一個數,b是從區間[0,2]任取的一個數,求上述方程有實根的概率.

查看答案和解析>>

同步練習冊答案