在平面直角坐標系xOy中,設曲線C1:
所圍成的封閉圖形的面積為
,曲線C1上的點到原點O的最短距離為
.以曲線C1與坐標軸的交點為頂點的橢圓記為C2.
(1)求橢圓C2的標準方程;
(2)設AB是過橢圓C2中心O的任意弦,l是線段AB的垂直平分線.M是l上的點(與O不重合).
①若MO=2OA,當點A在橢圓C2上運動時,求點M的軌跡方程;
②若M是l與橢圓C2的交點,求△AMB的面積的最小值.
(1)
;(2)①
;②
.
解析試題分析:(1)對于曲線C1:
的處理,關鍵問題是兩個絕對值的處理,根據x,y的特點,不難發現與坐標系中的四個象限有關,進而即可得到
,即可得出橢圓方程; (2)①由l是線段AB的垂直平分線,可轉化為:
,又由MO=2OA,可轉化得到:
,這樣的好處是兩條件均轉化為向量了,設出點M和點A的坐標即可得到關系:
解出
再利用點M在所求橢圓上即可求出:
;②中要求△AMB的面積的最小值,根據此地三角形的特點,不難想到直線AB的設出,根據斜率是否存在,可先考慮兩種特殊情況:一種不存在;另一種為0,再考慮一般情形,運用方程組思想即可得:
和
,進而表示出面積:
,最后結合不等式知識即可求出最小值.
試題解析:(1)由題意得
又
,解得
,
.
因此所求橢圓的標準方程為
. 4分
(2)①設
,
,則由題設知:
,
.
即
解得
8分
因為點
在橢圓C2上,所以
,
即
,亦即
.
所以點M的軌跡方程為
. 10分
②假設AB所在的直線斜率存在且不為零,設AB所在直線方程為y=kx(k≠0).
解方程組
得
,
,
所以
,
.
又
解得
,
,所以
. 12分
由于![]()
![]()
![]()
![]()
,
當且僅當
時等號成立,即k=±1時等號成立,
此時△AMB面積的最小值是S△AMB=
. 15分
當k=0,S△AMB
;
當k不存在時,S△AMB
.
綜上所述,△AMB面積的最小值為
. 16分
考點:1.橢圓方程;2.直線與橢圓的位置關系;3.基本不等式
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,橢圓
的離心率為
,過橢圓右焦點
作兩條互相垂直的弦
與
.當直線
斜率為0時,
.![]()
(1)求橢圓的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
(a>b>0)的離心率為
,且過點(
).
(1)求橢圓E的方程;
(2)設直線l:y=kx+t與圓
(1<R<2)相切于點A,且l與橢圓E只有一個公共點B.
①求證:
;
②當R為何值時,
取得最大值?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面上的動點P(x,y)及兩個定點A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-![]()
(1).求動點P的軌跡C方程;
(2).設直線L:y=kx+m與曲線C交于不同兩點,M,N,當OM⊥ON時,求O點到直線L的距離(O為坐標原點)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點為
,點
為拋物線上的一點,其縱坐標為
,
.
(1)求拋物線的方程;
(2)設
為拋物線上不同于
的兩點,且
,過
兩點分別作拋物線的切線,記兩切線的交點為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知點
為橢圓![]()
右焦點,圓![]()
與橢圓
的一個公共點為
,且直線
與圓
相切于點
.![]()
(1)求
的值及橢圓
的標準方程;
(2)設動點
滿足
,其中M、N是橢圓
上的點,
為原點,直線OM與ON的斜率之積為
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓
的方程為
,離心率為
,且短軸一端點和兩焦點構成的三角形面積為1,拋物線
的方程為
,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓
和拋物線
的方程;
(2)過點F的直線交拋物線
于不同兩點A,B,交y軸于點N,已知
的值.
(3)直線
交橢圓
于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足
(O為原點),若點S滿足
,判定點S是否在橢圓
上,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓
(a>b>0)的上、下頂點分別為A、B,已知點B在直線l:
上,且橢圓的離心率e =
.![]()
(1)求橢圓的標準方程;
(2)設P是橢圓上異于A、B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l于點C,N為線段BC的中點,求證:OM⊥MN.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓E:
=1(a>b>0)的左焦點為F1,右焦點為F2,離心率e=
.過F1的直線交橢圓于A、B兩點,且△ABF2的周長為8.![]()
(1)求橢圓E的方程;
(2)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:在坐標平面內是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com