| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知
是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若
,是否存在
,有
?請(qǐng)說明理由;
(Ⅱ)若
(a、q為常數(shù),且aq
0)對(duì)任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若
試確定所有的p,使數(shù)列
中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中
的一項(xiàng),請(qǐng)證明.
【解析】第一問中,由
得
,整理后,可得![]()
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當(dāng)
時(shí),則![]()
即
,其中
是大于等于
的整數(shù)
反之當(dāng)
時(shí),其中
是大于等于
的整數(shù),則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設(shè)
當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)
為偶數(shù)時(shí),
式不成立。由
式得
,整理![]()
當(dāng)
時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),![]()
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由
得
,整理后,可得![]()
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當(dāng)
時(shí),則![]()
即
,其中
是大于等于
的整數(shù)反之當(dāng)
時(shí),其中
是大于等于
的整數(shù),則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設(shè)
當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)
為偶數(shù)時(shí),
式不成立。由
式得
,整理![]()
當(dāng)
時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),![]()
![]()
由
,得
![]()
當(dāng)
為奇數(shù)時(shí),此時(shí),一定有
和
使上式一定成立。
當(dāng)
為奇數(shù)時(shí),命題都成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省大慶實(shí)驗(yàn)中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com