(本小題11分)如圖,在四棱錐
中,
平面
,
,
,
,
,
.
![]()
(1)證明:
平面
(2)求
和平面
所成角的正弦值
(3)求二面角
的正切值;
(1)見解析;(2)
;(3)
。
【解析】
試題分析:(1)
平面
,所以
,又![]()
所以
平面
……………… 2分
![]()
(2)如圖,作
,交
于點
,
平面
,
平面
所以![]()
又
,所以
平面![]()
所以
是
和平面
所成角………………4分
中,![]()
……………………6分
所以
和平面
所成角的正弦為
……………… 7分
(3)作
交
于點
,連接![]()
平面
,所以
,又
,所以
平面
,所以![]()
又
,所以
平面
,所以
,
所以
是二面角
的平面角。……………… 9分
中,
,![]()
二面角
的正切值為
…………………… 11分
(用向量法酌情給分)
考點:線面垂直的性質(zhì)定理;線面垂直的判定定理;面面垂直項性質(zhì)定理;直線與平面所成的角;二面角。
點評:本題主要考查的知識點是二面角的平面角及求法,直線與平面垂直的判定。解決這類問題的常用方法有:綜合法和向量法。本題用的是綜合法,當(dāng)然也可以用向量法。
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高二上期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題11分)如圖,三棱錐C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分別是BC、AC的中點。
![]()
(1)求證:AC⊥BD;
(2)若CA = CB,求證:平面BCD⊥平面ABD
(3)在
上找一點M,在AD上找點N,使平面MED//平面BFN,說明理由;并求出
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分11分)
如圖,在ΔOAB中,已知
,單位圓O與OA交于C,
,P為單位圓O上的動點若
,求
的值;
記
的最小值為
,求
的表達式及
的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分11分)如圖,在ΔOAB中,已知
,單位圓O與OA交于C,
,P為單位圓O上的動點。
(1)若
,求
的值;
(2)若
,求
的值;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com