求下列各題中的函數(shù)f(x)的解析式.
(1) 已知f(
+2)=x+4
,求f(x);
(2) 已知f
=lgx,求f(x);
(3) 已知函數(shù)y=f(x)滿足2f(x)+f
=2x,x∈R且x≠0,求f(x);
(4) 已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)=f(x)+2x,求f(x).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
的左焦點(diǎn)為
,左、右頂點(diǎn)分別為
,過點(diǎn)
且傾斜角為
的直線
交橢圓于
兩點(diǎn),橢圓
的離心率為
,
.
(1)求橢圓
的方程;
(2)若
是橢圓上不同兩點(diǎn),![]()
軸,圓
過點(diǎn)
,且橢圓上任意一點(diǎn)都不在圓
內(nèi),則稱圓
為該橢圓的內(nèi)切圓.問橢圓
是否存在過點(diǎn)
的內(nèi)切圓?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(1)若a=0,F(xiàn)(x)=f(x)-g(x),求函數(shù)F(x)的極值點(diǎn)及相應(yīng)的極值.
(2)若對于任意x2>0,存在x1滿足x1<x2且g(x1)=f(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù)
(
).
(1)探索并證明函數(shù)
的單調(diào)性;
(2)是否存在實(shí)數(shù)
使函數(shù)
為奇函數(shù)?若有,求出實(shí)數(shù)
的值,并證明你的結(jié)論;若沒有,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
在區(qū)間
上有最大值
,最小值
.
(1)求函數(shù)
的解析式;
(2)設(shè)
.若
在
時(shí)恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
在定義域
是奇函數(shù),當(dāng)
時(shí),
.
(1)當(dāng)
,求
;
(2)對任意
,
,不等式
都成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知α、β是方程x2+(2m-1)x+4-2m=0的兩個(gè)實(shí)根,且α<2<β,求m的取值范圍;(2)若方程x2+ax+2=0的兩根都小于-1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知奇函數(shù)f(x)在定義域[-2,2]上單調(diào)遞減,求滿足f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com