中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知△ABC的三個頂點A(-1,-2),B(2,0),C(1,3).
(1)求AB邊上的高CD所在直線的方程;
(2)求△ABC的面積.
分析:(1)依題意可得直線AB的斜率,再由AB⊥CD得,求得CD的斜率,用點斜式求得直線CD的方程.
(2)求得|AB|的值,再用兩點式求得AB的方程,求出點C到直線AB的距離|CD|,再根據S△ABC=
1
2
|AB||CD|
,計算求得結果.
解答:解:(1)依題意可得直線AB的斜率kAB=
0+2
2+1
=
2
3

由AB⊥CD得:kAB•kCD=-1,∴kCD=-
3
2

故直線CD的方程為:y-3=-
3
2
(x-1)
,即:3x+2y-9=0.
(2)求得|AB|=
(2+1)2+(0+2)2
=
13
,直線AB的方程為:
y+2
0+2
=
x+1
2+1
,即:2x-3y-4=0,
點C到直線AB的距離 |CD|=
|2×1-3×3-4|
22+(-3)2
=
11
13
13

故有 S△ABC=
1
2
|AB||CD|=
1
2
×
13
×
11
13
13
=
11
2
點評:本題主要考查用點斜式、兩點式求直線的方程,兩直線垂直的性質,點到直線的距離公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知△ABC的三個頂點A、B、C及△ABC所在平面內一點P,若
PA
+
PB
+
PC
=
0
,若實數λ滿足
AB
+
AC
AP
,則實數λ等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三個頂點A,B,C及平面內一點P滿足:
PA
+
PB
+
PC
=
0
,若實數λ 滿足:
AB
+
AC
AP
,則λ的值為(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三個頂點A(2,1)、B(-2,3)、C(-3,0),求
(1)BC邊所在直線的一般式方程.
(2)BC邊上的高AD所在的直線的一般式方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三個頂點A、B、C及△ABC所在平面內的一點P,若
PA
+
PB
+
PC
=
0
若實數λ滿足
AB
+
AC
AP
,則實數λ等于
3
3

查看答案和解析>>

同步練習冊答案