已知直線

交橢圓

于

、

兩點,橢圓與

軸正半軸交于點

,

的重心恰好在橢圓的右焦點上,求直線

的方程。
直線

的方程為

橢圓

化為

,橢圓與

軸交于點

,右焦點為

,設(shè)

中點為

,

為三角形BMN的重心,則

,即

,∴

,∴

為

的中點,設(shè)

,

,則

,兩式相減得:

=

,∴直線

的方程為

,代入橢圓方程,經(jīng)檢驗得

,∴直線

的方程為

。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓

(
a>
b>0),
A、
B是橢圓上的兩點,線段
AB的垂直平分線與
x軸相交于點
P(
x0,0).證明

.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓

,能否在橢圓上找一點

,使

到左準(zhǔn)線的距離

是

到兩個焦點的距離的等比中項?并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題

是兩個定點,以

為一條底邊作梯形

,使

的長為定值,

與

的長之和也是定值,則

點的軌跡是什么曲線?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)點

是橢圓

上的一點,

是焦點,若

是直角,則

的面積為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知

是橢圓

的兩個焦點,

是橢圓上一點,

,則

是( )
| A.銳角三角形 | B.鈍角三角形 | C.直角三角形 | D.等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知平面內(nèi)動點P到兩定點F1,F(xiàn)2的距離的和等于常數(shù)2a,關(guān)于動點P的軌跡正確的說法是______.
①點P的軌跡一定是橢圓;
②2a>|F1F2|時,點P的軌跡是橢圓;
③2a=|F1F2|時,點P的軌跡是線段F1F2;
④點P的軌跡一定存在;
⑤點P的軌跡不一定存在.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知

是三角形的一個內(nèi)角,且

,則方程

表示
| A.焦點在x軸上的橢圓 | B.焦點在y軸上的橢圓 |
| C.焦點在x 軸上的雙曲線 | D.焦點在y 軸上的雙曲線 |
查看答案和解析>>