中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知△ABC中,sinA+cosA=
15

(1)求sinAcosA;
(2)求sinA-cosA;
(3)判斷△ABC為銳角三角形還是鈍角三角形.
分析:利用三角函數的基本性質進行化簡并結合與三角形的關系進行求解.
解答:解:∵(sinA+cosA)2=(
1
5
2
即1+2sinAcosA=
1
25

∴sinAcosA=-
12
25

∵A是三角形ABC中的角,且sinAcosA<0
∴A位于第三象限
即△ABC是鈍角三角形且sinA>0,cosA<0
∴1-2sinAcosA=(sinA-cosA)2=1+
24
25

sinA-cosA=
7
5

故答案為:
(1)sinAcosA=-
12
25

(2)sinA-cosA=
7
5

(3)△ABC是鈍角三角形
點評:考察三角函數的化簡以及在三角形中的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知△ABC中,sinA(sinB+
3
cosB)=
3
sinC,BC=3,則△ABC的周長的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,sinA(sinB+
3
cosB)=
3
sinC

(I)求角A的大小;
(II)若BC=3,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,sinA:sinB:sinC=k:(k+1):2k (k≠0),則k的取值范圍為(  )
A、(2,+∞)
B、(0,2)
C、(
1
2
,2)
D、(
1
2
,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,sinA=
1
2
,則A等于(  )

查看答案和解析>>

同步練習冊答案