已知命題
:
,命題
:方程
表示焦點(diǎn)在
軸上的雙曲線.
(1)命題
為真命題,求實(shí)數(shù)
的取值范圍;
(2)若命題“
”為真,命題“
”為假,求實(shí)數(shù)
的取值范圍.
(1)
(2)
或
.
解析試題分析:(1)焦點(diǎn)在x軸雙曲線的充要條件;(2)分命題
為真、命題
為假和命題
為假、命題
為真兩種情況求解
試題解析:(1)當(dāng)命題
為真時(shí),由已知得
,解得![]()
∴當(dāng)命題
為真命題時(shí),實(shí)數(shù)
的取值范圍是![]()
(2)當(dāng)命題
為真時(shí),由
解得![]()
由題意得命題
、
中有一真命題、有一假命題
當(dāng)命題
為真、命題
為假時(shí),則
,
解得
或
.
當(dāng)命題
為假、命題
為真時(shí),則
,
無解.
∴實(shí)數(shù)
的取值范圍是
或
.
考點(diǎn):焦點(diǎn)在x軸雙曲線的充要條件,四種媒體之間的關(guān)系
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
(a>b>0),過點(diǎn)(0,1),且離心率為
.
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點(diǎn),直線l:x=2
與x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A,B的動(dòng)點(diǎn),直線AP,BP分別交直線l于E,F(xiàn)兩點(diǎn).證明:當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),
恒為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率
,長軸的左右端點(diǎn)分別為
,
.
(1)求橢圓
的方程;
(2)設(shè)動(dòng)直線
與曲線
有且只有一個(gè)公共點(diǎn)
,且與直線
相交于點(diǎn)
.問在
軸上是否存在定點(diǎn)
,使得以
為直徑的圓恒過定點(diǎn)
,若存在,求出
點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)F(-2,0),且長軸長與短軸長的比為
,
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長軸上,設(shè)點(diǎn)P是橢圓上的任意一點(diǎn),若當(dāng)
最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線關(guān)于
軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)
、
、
均在拋物線上.![]()
(1)寫出該拋物線的方程及其準(zhǔn)線方程;
(2)當(dāng)
與
的斜率存在且傾斜角互補(bǔ)時(shí),求
的值及直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,F1、F2分別為橢圓C:
的左、右兩個(gè)焦點(diǎn),A、B為兩個(gè)頂點(diǎn),該橢圓的離心率為
,
的面積為
.![]()
(1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)作與AB平行的直線
交橢圓于P、Q兩點(diǎn),
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是橢圓E:
的兩個(gè)焦點(diǎn),拋物線
的焦點(diǎn)為橢圓E的一個(gè)焦點(diǎn),直線y=
上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上,![]()
(1)求橢圓E的方程;
(2)如圖,過點(diǎn)
的動(dòng)直線
交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,已知
,
,
是橢圓
上不同的三點(diǎn),
,
,
在第三象限,線段
的中點(diǎn)在直線
上.![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)
在橢圓上(異于點(diǎn)
,
,
)且直線PB,PC分別交直線OA于
,
兩點(diǎn),證明
為定值并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,等邊三角形OAB的邊長為8
,且其三個(gè)頂點(diǎn)均在拋物線E:x2=2py(p>0)上.![]()
(1)求拋物線E的方程;
(2)設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q.證明:以PQ為直徑的圓恒過y軸上某定點(diǎn).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com