中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知A={x|x≤-2},B={x|x<m},若B?A,則實數m的取值范圍是(  )
A、[-2,+∞)B、(2,+∞)C、(-∞,-2)D、(-∞,-2]
分析:根據條件B⊆A,即可確定實數m的取值范圍.
解答:解:∵A={x|x≤-2},B={x|x<m},若B⊆A,
∴m≤-2,
故選:D.
點評:本題主要考查集合關系的應用,比較基礎.注意端點處等號的取舍問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知A={x|x<3},B={x|-1<x<5},則A∪B等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|
x-5
2
<-1},若?AB={x|x+4<-x},則集合B=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|x<1},B={x|-1<x<2},則A∪B=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區間(-∞,0)上的單調性;
(Ⅲ)若數學公式,設g(x)是函數f(x)在區間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區間數學公式上的值域為數學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區間(-∞,0)上的單調性;
(Ⅲ)若,設g(x)是函數f(x)在區間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案