中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知各項均為正數的數列滿足,且,其中.

(Ⅰ)求數列的通項公式;

(Ⅱ)設數列滿足是否存在正整數m、n(1<m<n),使得成等比數列?若存在,求出所有的m、n的值,若不存在,請說明理由。

 

【答案】

(Ⅰ)數列的通項公式為;(Ⅱ)存在,

【解析】

試題分析:(Ⅰ)求數列的通項公式,首先須知道數列的特征,由題意可得,,由于各項均為正數,故有即,這樣得到數列是公比為的等比數列,由可求出,從而可得數列的通項公式;(Ⅱ)設數列滿足是否存在正整數,使得成等比數列,首先求出數列的通項公式,,然后假設存在正整數,使得成等比數列,則,整理可得,只要即可,解不等式求出的范圍,看是否有正整數,從而的結論.

試題解析:(Ⅰ)因為即

所以有即

所以數列是公比為的等比數列

解得。

從而,數列的通項公式為。        6分

(II)=,若成等比數列,則,

,可得

所以,解得:。

,且,所以,此時

故當且僅當使得成等比數列。        13分

考點:等比數列的定義,及通項公式,探索性命題.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知各項均為正數的數列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數{an}的通項公式;
(Ⅱ)設數{bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知各項均為正數的數列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數{an}的通項公式;
(Ⅱ)設數{bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較數學公式數學公式的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源:青島二模 題型:解答題

已知各項均為正數的數列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數{an}的通項公式;
(Ⅱ)設數{bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源:《第2章 數列》、《第3章 不等式》2010年單元測試卷(陳經綸中學)(解析版) 題型:解答題

已知各項均為正數的數列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數{an}的通項公式;
(Ⅱ)設數{bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源:2012年高考復習方案配套課標版月考數學試卷(二)(解析版) 題型:解答題

已知各項均為正數的數列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數{an}的通項公式;
(Ⅱ)設數{bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習冊答案