如圖,在四棱柱
中,已知平面
平面
且
,
.
(1) 求證:![]()
(2) 若
為棱
上的一點,且
平面
,求線段
的長度![]()
科目:高中數學 來源: 題型:解答題
如圖. 直三棱柱ABC —A1B1C1中,A1B1= A1C1,點D、E分別是棱BC,CC1上的點(點D不同于點C),且AD⊥DE,F為B1C1的中點.
求證:(1)平面ADE⊥平面BCC1B1
(2)直線A1F∥平面ADE.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在幾何體ABCDE中,∠BAC=
,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)設平面ABE與平面ACD的交線為直線
,求證:
∥平面BCDE;
(2)設F是BC的中點,求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,ABCD是邊長為2的正方形,
,ED=1,
//BD,且
.
(1)求證:BF//平面ACE;
(2)求證:平面EAC
平面BDEF;
(3)求二面角B-AF-C的大小.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com