數學英語物理化學 生物地理
數學英語已回答習題未回答習題題目匯總試卷匯總練習冊解析答案
設雙曲線的右焦點為,左右頂點分別為,過且與雙曲線的一條漸近線平行的直線與另一條漸近線相交于,若恰好在以為直徑的圓上,則雙曲線的離心率為________ ______.
解析試題分析:根據題意,設出點F(C,0)根據題意過,過且與雙曲線的一條漸近線平行的直線:,因為的坐標分別是(a,0)(-a,0)則恰好在以為直徑的圓上,|OP|=a,即,故填寫。考點:雙曲線的方程,離心率點評:解決雙曲線的離心率,一般主要是從定義和幾何性質入手來分析得到a,b,c的關系,進而求解得到結論。屬于基礎題
科目:高中數學 來源: 題型:填空題
過拋物線y2=4x的焦點作直線交拋物線于A(x1,y1),B(x2,y2)兩點,若x1+x2=6,那么|AB|等于 ;
若拋物線上一點到準線的距離等于它到頂點的距離,則點的坐標為____
若直線y=x+k與曲線x=恰有一個公共點,則k的取值范圍是___________
若拋物線的焦點與雙曲線的右焦點重合,則的值 .
雙曲線的漸近線方程為 .
若拋物線的焦點在圓上,則 .
設A、B為在雙曲線上兩點,O為坐標原點.若=0,則ΔAOB面積的最小值為______
設點在曲線上,點在曲線上,則的最小值等于 .
國際學校優選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區