中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

汕頭二中擬建一座長米,寬米的長方形體育館.按照建筑要求,每隔米(為正常數)需打建一個樁位,每個樁位需花費萬元(樁位視為一點且打在長方形的邊上),樁位之間的米墻面需花萬元,在不計地板和天花板的情況下,當為何值時,所需總費用最少?

【解析】本試題主要考查了導數在研究函數中的運用。先求需打個樁位.再求解墻面所需費用為:,最后表示總費用,利用導數判定單調性,求解最值。

解:由題意可知,需打個樁位. …………………2分

墻面所需費用為:,……4分

∴所需總費用)…7分

,則 

時,;當時,

∴當時,取極小值為.而在內極值點唯一,所以.∴當時,(萬元),即每隔3米打建一個樁位時,所需總費用最小為1170萬元.

 

【答案】

時,(萬元),

 

練習冊系列答案
相關習題

同步練習冊答案