中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知橢圓,順次連結橢圓的四個頂點,所得四邊形的內切圓與長軸的兩交點正好是長軸的兩個三等分點,則橢圓的離心率等于(    ).
A.B.C.D.
B
由橢圓的性質得四邊形的內切圓的半徑
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的左、右頂點分別為為短軸的端點,△的面積為,離心率是
(Ⅰ)求橢圓的方程;
(Ⅱ)若點是橢圓上異于的任意一點,直線與直線分別交于兩點,證明:以為直徑的圓與直線相切于點 (為橢圓的右焦點).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題12分)橢圓:的兩個焦點為,點在橢圓上,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過圓的圓心,交橢圓兩點,且關于點對稱,求直線的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓=1的離心率為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓E的長軸的一個端點是拋物線的焦點,離心率是
(1)求橢圓E的方程;
(2)過點C(—1,0),斜率為k的動直線與橢圓E相交于A、B兩點,請問x軸上是否存在點M,使為常數?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的右焦點到直線的距離是
A. B.  C.1  D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.(本小題滿分12分)已知橢圓的中心在原點,焦點在軸上,一個頂點為,且其右焦點到直線的距離為3.
(1)求橢圓的方程;
(2)是否存在斜率為 ,且過定點的直線,使與橢圓交于兩個不同的點,且?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線
于點,線段垂直平分線交于點,求點的軌跡的方程;
(3)當P不在軸上時,在曲線上是否存在兩個不同點C、D關于對稱,若存在,
求出的斜率范圍,若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

曲線在橫坐標為的點處的切線為L,則點(3,2)到L的距離是
A.B.C.D.

查看答案和解析>>

同步練習冊答案