已知雙曲線的兩個焦點為

,

,

是此雙曲線上一點,
若

,

,則該雙曲線的方程是( )
分析:由

,知MF
1⊥MF
2,所以(|MF
1|-|MF
2|)
2=|MF
1|
2-2|MF
1|?|MF
2|+|MF
2|
2=40-2×2=36,由此得到a=3,進而得到該雙曲線的方程.
解答:解:∵

∴

⊥

,∴MF
1⊥MF
2,
∴|MF
1|
2+|MF
2|
2=40,
∴(|MF
1|-|MF
2|)
2=|MF
1|
2-2|MF
1|?|MF
2|+|MF
2|
2=40-2×2=36,
∴||MF
1|-|MF
2||=6=2a,a=3,
又c=

,∴b
2=c
2-a
2=1,
∴雙曲線方程為

故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(12分)
設(shè)平面內(nèi)的向量

點

是直線

上的一個動點,求當(dāng)

取最小值時,

的坐標(biāo)及

的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知非零向量
a,
b滿足|
a +
b| =|
a–
b |=

|
a|,則
a +
b與
a–
b的夾角為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)

a,

b, 且|a|="|" b|=6,∠AOB=120

,則|a-b|等于( )
| A.36 | B.12 | C.6 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知向量

=(0,2,1),

=(-1,1,-2),則

·

的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在

中,

,直線

為BC中垂線,在

上的任取一點P,記

,則
▲
查看答案和解析>>