中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
1
x2-2
(x<-
2
)
,數列an滿足a1=1,
1
an+1
=f-1(an)
,則通項公式an為(  )
A、2n-1
B、
1
2n-1
C、
2n-1
D、
1
2n-1
分析:先求得函數的反函數,再由“a1=1,
1
an+1
=f-1(an)
”,得到“∴
1
an+1
=
1
an2
+ 2
”,進而有“
1
an+12
-
1
an2
=2
”由等差數列的通項公式求解.
解答:解:∵函數f(x)=
1
x2-2
(x<-
2
)

f-1(x )=
1
x2
+ 2

a1=1,
1
an+1
=f-1(an)

1
an+1
1
an2
+ 2

1
an+12
1
an2
 =2

{
1
an2
}
是以2為公差的等差數列
1
an2
=2n-1
,an>0
an
1
2n-1

故選B
點評:本題主要考查數列與函數的綜合綜合運用,主要涉及了函數及其反函數的求法及應用,等差數列的定義及其通項公式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)、已知函數f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點;
②?x∈(8,+∞),f(x)>0.
則實數a的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1+lnx
x

(1)如果a>0,函數在區間(a,a+
1
2
)
上存在極值,求實數a的取值范圍;
(2)當x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在D上的函數f(x)如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界.已知函數f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數,請說明理由;
(2)若函數f(x)在[0,1]上是以3為上界的有界函數,求m的取值范圍.

查看答案和解析>>

同步練習冊答案