中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系中,若雙曲線的離心率為,則的值為        
2
因為此雙曲線的焦點在x軸上,所以.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的中心在原點,焦點在軸上,離心率為,且經過點,直線交橢圓于不同的兩點.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不過點,求證:直線軸圍成一個等腰三角形.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

方程表示的曲線為,給出下列四個命題:
①曲線不可能是圓;  ②若,則曲線為橢圓;③若曲線為雙曲線,則;④若曲線表示焦點在x軸上的橢圓,則.
其中正確的命題是__________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率,A,B分別為橢圓的長軸和短軸的端點,M為AB的中點,O為坐標原點,且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點,求△POQ面積最大時直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知動點與平面上兩定點連線的斜率的積為定
.
(1)求動點的軌跡方程;(2)設直線與曲線交于兩點,當||=時,求直線的方程. 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直角坐標系上取兩個定點,再取兩個動點,且.
(Ⅰ)求直線交點的軌跡的方程;
(Ⅱ)已知點()是軌跡上的定點,是軌跡上的兩個動點,如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓C方程:(x-1)2 + y 2=9,垂直于x軸的直線L與圓C相切于N點(N在圓心C的右側),平面上有一動點P,若PQ⊥L,垂足為Q,且

(1)求點P的軌跡方程; 
(2)已知D為點P的軌跡曲線上第一象限弧上一點,O為原點,A、B分別為點P的軌跡曲線與軸的正半軸的交點,求四邊形OADB的最大面積及D點坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知橢圓E經過點A(2,3),對稱軸為坐標軸,焦點在x軸上,離心率
(1)求橢圓E的方程;
(2)求的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的離心率是(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案