中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
合肥市環保總站發布2014年1月11日到1月20日的空氣質量指數(AQI),數據如下:153、203、268、166、157、164、268、407、335、119,則這組數據的中位數是________.
試題分析:將題中所給的數據從小到大的排列為,則中位數為中間兩位數的平均值.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

某學校制定學校發展規劃時,對現有教師進行年齡狀況和接受教育程度(學歷)的調查,其結果(人數分布)如表:
學歷
35歲以下
35至50歲
50歲以上
本科
80
30
20
研究生
x
20
y
(1)用分層抽樣的方法在35至50歲年齡段的教師中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有l人的學歷為研究生的概率;
(2)在該校教師中按年齡狀況用分層抽樣的方法抽取N個人,其中35歲以下48人,50歲以上10人,再從這N個人中隨機抽取l人,此人的年齡為50歲以上的概率為,求x、y的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在某批次的某種燈泡中,隨機地抽取個樣品,并對其壽命進行追蹤調查,將結果列成頻率分布表如下.根據壽命將燈泡分成優等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優等品,壽命小于天的燈泡是次品,其余的燈泡是正品.
壽命(天)
頻數
頻率















合計


(1)根據頻率分布表中的數據,寫出的值;
(2)某人從燈泡樣品中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結果相同,求的最小值;
(3)某人從這個批次的燈泡中隨機地購買了個進行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個數,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產量是否與年齡有關.現采用分層抽樣的方法,從中抽取了100名工人,先統計了他們某月的日平均生產件數,然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產件數分成5組:,,,,分別加以統計,得到如圖所示的頻率分布直方圖.


(1)從樣本中日平均生產件數不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規定日平均生產件數不少于80件者為“生產能手”,請你根據已知條件完成的列聯表,并判斷是否有的把握認為“生產能手與工人所在的年齡組有關”?

附表:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

為了調查某大學學生在周日上網的時間,隨機對名男生和名女生進行了不記名的問卷調查,得到了如下的統計結果:
表1:男生上網時間與頻數分布表
上網時間(分鐘)





人數
5
25
30
25
15
表2:女生上網時間與頻數分布表
上網時間(分鐘)





人數
10
20
40
20
10
(Ⅰ)若該大學共有女生750人,試估計其中上網時間不少于60分鐘的人數;
(Ⅱ)完成表3的列聯表,并回答能否有90%的把握認為“學生周日上網時間與性別有關”?
(Ⅲ)從表3的男生中“上網時間少于60分鐘”和“上網時間不少于60分鐘”的人數中用分層抽樣的方法抽取一個容量為5的樣本,再從中任取兩人,求至少有一人上網時間超過60分鐘的概率.
表3 :
 
上網時間少于60分鐘
上網時間不少于60分鐘
合計
男生
 
 
 
女生
 
 
 
合計
 
 
 
附:,其中

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

總體由編號為01,02,…,19,20的20個個體組成.利用下面的隨機數表選取5個個體,選取方法從隨機數表第1行的第5列和第6列數字開始由左到右一次選取兩個數字,則選出來的第5個個體的編號為   (   )
7816    6572    0802    6314    0702   4369    9728    0198
3204    9234    4934    8200    3623    4869   6938    7481
A.08          B.07          C.02          D.01

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知某地每單位面積菜地年平均使用氮肥量x(kg)與每單位面積蔬菜年平均產量y(t)之間的關系有如下數據:
年份
1985
1986
1987
1988
1989
1990
1991
1992
x(kg)
70
74
80
78
85
92
90
95
y(t)
5.1
6.0
6.8
7.8
9.0
10.2
10.0
12.0
 
年份
1993
1994
1995
1996
1997
1998
1999
 
x(kg)
92
108
115
123
130
138
145
 
y(t)
11.5
11.0
11.8
12.2
12.5
12.8
13.0
 
(1)求x與y之間的相關系數,并檢驗是否線性相關;
(2)若線性相關,求蔬菜產量y與使用氮肥量x之間的回歸直線方程,并估計每單位面積施肥150 kg時,每單位面積蔬菜的年平均產量.
(已知數據:=101,≈10.113 3,=161 125,=1 628.55,=16 076.8)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

對196個接受心臟搭橋手術的病人和196個接受血管清障手術的病人進行了3年的跟蹤研究,調查他們是否又發作過心臟病,調查結果如下所示:
 
又發作過心臟病
未發作過心臟病
合計
心臟搭橋手術
39
157
196
血管清障手術
29
167
196
合計
68
324
392
比較這兩種手術對病人又發作心臟病的影響有沒有差別.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某校高三某班的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下圖,據此解答如下問題:

(1)求分數在[50,60)的頻率及全班的人數.
(2)求分數在[80,90)之間的頻數,并計算頻率分布直方圖中[80,90)間的矩形的高.
(3)若要從分數在[80,100]之間的試卷中任取兩份分析學生失分情況,在抽取的試卷中,求至少有一份在[90,100]之間的概率.

查看答案和解析>>

同步練習冊答案