中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

已知函數(shù)).

1)判斷曲線在點(diǎn)(1)處的切線與曲線的公共點(diǎn)個數(shù);

2)當(dāng)時,若函數(shù)有兩個零點(diǎn),求的取值范圍

 

【答案】

1)當(dāng)△>時,即時,有兩個公共點(diǎn);

當(dāng)△=時,即時,有一個公共點(diǎn);

當(dāng)△<,時,沒有公共點(diǎn) .

2當(dāng)時,函數(shù)有兩個零點(diǎn).

【解析】

試題分析:(1)求導(dǎo)數(shù)得切線的斜率,由直線方程的點(diǎn)斜式,得到曲線在點(diǎn)(1)處的切線方程為

,利用一元二次方程根的判別式討論得解.

2)為討論=的零點(diǎn),

得到

因此可令,利用導(dǎo)數(shù)知識,討論起最大值、最小值即得所求.

試題解析:(1,所以斜率 2

,曲線在點(diǎn)(1)處的切線方程為 3

4

由△=可知:

當(dāng)△>時,即時,有兩個公共點(diǎn);

當(dāng)△=時,即時,有一個公共點(diǎn);

當(dāng)△<,時,沒有公共點(diǎn) 7

2=

8

,則

當(dāng),由 10

所以,上單調(diào)遞減,在上單調(diào)遞增

因此, 11

比較可知

所以,當(dāng)時,函數(shù)有兩個零點(diǎn). 14

考點(diǎn):導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,直線與圓錐曲線的位置關(guān)系,轉(zhuǎn)化與劃歸思想.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時有極大值6,在x=1時有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函數(shù)f(x)的周期T和單調(diào)遞增區(qū)間;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=asinx+bcosx+c的圖象上有一個最低點(diǎn)(
11π
6
,-1)

(Ⅰ)如果x=0時,y=-
3
2
,求a,b,c.
(Ⅱ)如果將圖象上每個點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的
3
π
,然后將所得圖象向左平移一個單位得到y(tǒng)=f(x)的圖象,并且方程f(x)=3的所有正根依次成為一個公差為3的等差數(shù)列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1為正實(shí)數(shù).
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,記an=lg
xn+2xn-2
,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則函數(shù)f(x)的解析式為(  )
A、f(x)=2sin(
1
2
x+
π
6
)
B、f(x)=2sin(
1
2
x-
π
6
)
C、f(x)=2sin(2x-
π
6
)
D、f(x)=2sin(2x+
π
6
)

查看答案和解析>>

同步練習(xí)冊答案