中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(理)已知函數f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若滿足地f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是
 

(文)在平面直角坐標系xOy中,設
OM
=(1,
1
2
)
ON
=(0,1)
,動點P(x,y)同時滿足
0≤
OP
OM
≤1
0≤
OP
ON
≤1
則z=x+y的最大值是
 
分析:(理)畫出函數f(x)=f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
的圖象,根據f(a)=f(b)=f(c),不妨a<b<c,結合圖象求出a+b+c的范圍即可.
(文)利用向量的數量積求出x,y的約束條件,畫出可行域,將目標函數變形得到z的幾何意義,畫出目標函數對應的直線,數形結合求出最值.
解答:精英家教網解:(理)作出函數f(x)的圖象如圖,
不妨設a<b<c,則a+b=1,c∈(1,2011)
a+b+c=1+c∈(2,2012)
故答案為:(2,2012).
(文):
OP
OM
=x+
1
2
y
OP
ON
=y

據題意得
0≤x+
1
2
y≤1
0≤y≤1

精英家教網畫出可行域
將z=x+y變形為y=-x+z畫出相應的直線,將直線平移至可行域中的點(
1
2
,1)時,縱截距最大,z最大將(
1
2
,1)代入z=x+y得到z的最大值
3
2

故答案為
3
2
點評:(1)本小題主要考查分段函數、對數的運算性質以及利用數形結合解決問題的能力.解答的關鍵是圖象法的應用,即利用函數的圖象交點研究方程的根的問題.
(2)本題考查向量的數量積公式、畫出不等式組的可行域、給目標函數賦予幾何意義、數形結合求最值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網精英家教網(理)已知函數f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調遞減;
(3)如圖給出的是與函數f(x)相關的一個程序框圖,試構造一個公差不為零的等差數列
{an},使得該程序能正常運行且輸出的結果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)已知函數f(x)=
sin2x-(a-4)(sinx-cosx)+a
的定義域為{x|2kπ≤x≤2kπ+
π
2
,k∈Z}
,則實數a的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•普陀區(qū)三模)(理)已知函數f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是
(2,2012)
(2,2012)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•普陀區(qū)三模)(理)已知函數f(x)=
ln(2-x2)|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調遞減;
(3)右圖給出的是與函數f(x)相關的一個程序框圖,試構造一個公差不為零的等差數列{an},使得該程序能正常運行且輸出的結果恰好為0.請說明你的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點.
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關于n的解析式;
(3)對(2)中的Tn,設數列{an}滿足a1=2,當n≥2時,an=4Tn+2,問是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案