中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知圓錐曲線C上任意一點到兩定點F1(-1,0)、F2(1,0)的距離之和為常數,曲線C的離心率e=
1
2

(1)求圓錐曲線C的方程;
(2)設經過點F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個定點P,使
PA
PB
的值是常數.
(1)依題意,設曲線C的方程為
x2
a2
+
y2
b2
=1
(a>b>0),
∴c=1,
e=
c
a
=
1
2

∴a=2,
b=
a2-c2
=
3

所求方程為
x2
4
+
y2
3
=1

(2)當直線AB不與x軸垂直時,設其方程為y=k(x-1),
x2
4
+
y2
3
=1
y=k(x-1)

得(3+4k2)x2-8k2x+4(k2-3)=0,
從而xA+xB=
8k2
3+4k2
xAxB=
4(k2-3)
3+4k2

設P(t,0),則
PA
PB
=(xA-t)(xB-t)+yAyB
=(k2+1)xAxB-(t+k2)(xA+xB)+(k2+t2)=
3t2-12+(-5-8t+4t2)k2
3+4k2

3t2-12
3
=
-5-8t+4t2
4

解得t=
11
8

此時對?k∈R,
PA
PB
=-
135
64

當AB⊥x軸時,直線AB的方程為x=1,
xA=xB=1,yA(yB)=±
3
2

t=
11
8
PA
PB
=(xA-t)(xB-t)+yAyB=
9
64
-
9
4
=-
135
64

即存在x軸上的點P(
11
8
,0)
,使
PA
PB
的值為常數-
135
64
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓錐曲線C上任意一點到兩定點F1(-1,0)、F2(1,0)的距離之和為常數,曲線C的離心率e=
1
2

(1)求圓錐曲線C的方程;
(2)設經過點F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個定點P,使
PA
PB
的值是常數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓錐曲線C上任意一點到兩定點F1(-1,0)、F2(1,0)的距離之和為常數,曲線C的離心率數學公式
(1)求圓錐曲線C的方程;
(2)設經過點F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個定點P,使數學公式的值是常數.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年廣東省汕尾市陸豐市啟恩中學高二(下)第二次段考數學試卷(理科 )(解析版) 題型:解答題

已知圓錐曲線C上任意一點到兩定點F1(-1,0)、F2(1,0)的距離之和為常數,曲線C的離心率
(1)求圓錐曲線C的方程;
(2)設經過點F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個定點P,使的值是常數.

查看答案和解析>>

科目:高中數學 來源:2011年廣東省江門市高考數學一模試卷(理科)(解析版) 題型:解答題

已知圓錐曲線C上任意一點到兩定點F1(-1,0)、F2(1,0)的距離之和為常數,曲線C的離心率
(1)求圓錐曲線C的方程;
(2)設經過點F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個定點P,使的值是常數.

查看答案和解析>>

同步練習冊答案