中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=-
1
3
x3+
1
2
x2+2ax
,當0<a<2時,有f(x)在x∈[1,4]上的最小值為-
16
3
,則f(x)在該區間上的最大小值是
10
3
10
3
分析:由f′(x)=-x2+x+2a=-(x-
1
2
2+2a+
1
4
,當0<a<2時,f(x)在[1,4]上先增后減,由f(x)在x∈[1,4]上的最小值為-
16
3
,知f(x)在[1,4]上的最小值=min{f(1),f(4)}=min{2a-
1
6
,8a-
40
3
}=8a-
40
3
=-
16
3
,故a=1.由此能求出f(x)在該區間上的最大值.
解答:解:f′(x)=-x2+x+2a=-(x-
1
2
2+2a+
1
4

當0<a<2時,f(x)在[1,4]上先增后減
∵f(x)在x∈[1,4]上的最小值為-
16
3

∴f(x)在[1,4]上的最小值=min{f(1),f(4)}
=min{2a-
1
6
,8a-
40
3
}=8a-
40
3
=-
16
3

∴a=1
∴f(x)在該區間上的最大值=f(2)=
10
3

故答案為:
10
3
點評:本題考查利用導數求閉區間上函數的最值,考查運算求解能力,推理論證能力;考查化歸與轉化思想.對數學思維的要求比較高,有一定的探索性.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=
-1,x>0
1,x<0
,則
(a+b)-(a-b)f(a-b)
2
(a≠b)的值是(  )
A、aB、b
C、a,b中較小的數D、a,b中較大的數

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
1-x
1+x
的反函數為h(x),又函數g(x)與h(x+1)的圖象關于有線y=x對稱,則g(2)的值為(  )
A、-
4
3
B、-
1
3
C、-1
D、-2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
 
1-x2
,(|x|≤1)
|x|,(|x|>1)
,若方程f(x)=a有且只有一個實根,則實數a滿足(  )
A、a<0B、0≤a<1
C、a=1D、a>1

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
1+x2
1-x2

①求它的定義域;
②求證:f(
1
x
)=-f(x)

③判斷它在(1,+∞)單調性,并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•淮北一模)設函數f(x)=
1+x1-x
e-ax

(1)寫出定義域及f′(x)的解析式,
(2)設a>O,討論函數y=f(x)的單調性.

查看答案和解析>>

同步練習冊答案