在斜三棱柱
中,平面
平面ABC,
,
,
.
(1)求證:
;
(2)若
,求二面角
的余弦值.![]()
(1)證明過程詳見解析;(2)
.
解析試題分析:本題主要考查線線垂直、線面垂直、面面垂直、線線平行、二面角的余弦等基礎(chǔ)知識,考查學(xué)生的空間想象能力、邏輯推理能力、計算能力.第一問,利用面面垂直的性質(zhì)得BC⊥平面A1ACC1,則利用線面垂直的性質(zhì)得A1A⊥BC,由A1B⊥C1C,利用平行線A1A∥C1C,則A1A⊥A1B,利用線面垂直的判定得A1A⊥平面A1BC,則利用線面垂直的性質(zhì)得A1A⊥A1C;第二問,建立空間直角坐標(biāo)系,得到面上的點(diǎn)的坐標(biāo),計算出向量坐標(biāo),求出平面
和平面
的法向量,利用夾角公式計算出二面角的余弦值.
(1)因為平面A1ACC1⊥平面ABC,AC⊥BC,所以BC⊥平面A1ACC1,
所以A1A⊥BC.
因為A1B⊥C1C,A1A∥C1C,所以A1A⊥A1B,
所以A1A⊥平面A1BC,所以A1A⊥A1C. 5分![]()
(2)建立如圖所示的坐標(biāo)系C-xyz.
設(shè)AC=BC=2,因為A1A=A1C,
則A(2,0,0),B(0,2,0),A1(1,0,1),C(0,0,0).
=(0,2,0),
=(1,0,1),
=(-2,2,0).
設(shè)n1=(a,b,c)為面BA1C的一個法向量,則n1·
=n1·
=0,
則
,取n1=(1,0,-1).
同理,面A1CB1的一個法向量為n2=(1,1,-1). 9分
所以cosán1,n2ñ=
=
,
故二面角B-A1C-B1的余弦值為
. 12分
考點(diǎn):線線垂直、線面垂直、面面垂直、線線平行、二面角的余弦.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱
中,![]()
底面
.四邊形
為梯形,
,且
.過
三點(diǎn)的平面記為
,
與
的交點(diǎn)為
.
(1)證明:
為
的中點(diǎn);
(2)求此四棱柱被平面
所分成上下兩部分的體積之比;
(3)若![]()
,
,梯形
的面積為6,求平面
與底面
所成二面角大小.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在邊長為
的正方形
中,點(diǎn)
在線段
上,且
,
,作
//
,分別交
,
于點(diǎn)
,
,作
//
,分別交
,
于點(diǎn)
,
,將該正方形沿
,
折疊,使得
與
重合,構(gòu)成如圖所示的三棱柱
.
(1)求證:
平面
;
(2)若點(diǎn)E為四邊形BCQP內(nèi)一動點(diǎn),且二面角E-AP-Q的余弦值為
,求|BE|的最小值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,棱柱ABCD-A1B1C1D1的所有棱長都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.![]()
(1)證明:BD⊥AA1;
(2)求銳二面角D-A1A-C的平面角的余弦值;
(3)在直線CC1上是否存在點(diǎn)P,使BP∥平面DA1C1?若存在,求出點(diǎn)P的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐
的底面是平行四邊形,
,
,
面
,
且
.若
為
中點(diǎn),
為線段
上的點(diǎn),且
.
(1)求證:
平面
;
(2)求PC與平面PAD所成角的正弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐
的底面的菱形,
,點(diǎn)
是
邊的中點(diǎn),
交于點(diǎn)
,![]()
![]()
(1)求證:
;
(2)若
的大小;
(3)在(2)的條件下,求異面直線
與
所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且
,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.![]()
(1)求證:AG
平面BDE;
(2)求:二面角G
DE
B的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com