已知直線
經過直線
與直線
的交點
,且垂直于直線
.(1)求直線
的方程;(2)求直線
與兩坐標軸圍成的三角形的面積
.
(1)
;(2)1.
解析試題分析:(1)法一:先聯立兩已知直線方程,求出兩直線的交點坐標,再由垂直的關系求出直線的斜率,最后由點斜式就可寫出所求直線的方程;法二:先由過兩直線交點的直線系方程,再由互相垂直二直線的斜率之積等于-1,就可求出其中參數值,從而獲得所求直線方程;只是要注意直線系方程的形式;
(2)由(1)的結果不難求得直線
與兩坐標軸的交點坐標,并知直線
與兩坐標軸圍成的三角形是直角三角形,故易求此三角形的面積.
試題解析:(1)解法一:聯立兩直線方程
解得
,則兩直線的交點為P(-2,2),又因為直線
的斜率為
,由于所求直線
與直線
垂直,那么直線
的斜率
,故所求直線
的方程為:
;
解法二:由直線系方程,由已知可設所求直線
的方程為:
即
與直線
垂直,所以
,故所求直線
的方程為:
;
(2)對于直線
的方程為:
,令y=0,則x=-1,即直線
與x軸的交點坐標A(-1,0),再令x=0則y="-2," 即直線
與y軸的交點坐標B(0,-2);從而直線
與兩坐標軸圍成的三角形為直角三角形AOB
.
考點:直線方程.
科目:高中數學 來源: 題型:解答題
已知三條直線l1:2x-y+a =" 0" (a>0),直線l2:-4x+2y+1 = 0和直線l3:x+y-1= 0,且l1與l2的距離是
.
(1)求a的值;
(2)能否找到一點P,使得P點同時滿足下列三個條 件:
①P是第一象限的點;
②P 點到l1的距離是P點到l2的距離的
;
③P點到l1的距離與P點到l3的距離之比是
∶
.若能,求P點坐標;若不能,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定點M(0,2),N(-2,0),直線l:kx-y-2k+2=0(k為常數).
(1)若點M,N到直線l的距離相等,求實數k的值;
(2)對于l上任意一點P,∠MPN恒為銳角,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:
(1)△ABC中平行于BC邊的中位線所在直線的一般式方程和截距式方程;
(2)BC邊的中線所在直線的一般式方程,并化為截距式方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com