中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=loga(x-3a) (a>0且a≠1)的圖象為c1,將c1向左平移2a個單位得圖象c2,函數g(x)的圖象c3與c2關于x軸對稱.
(1)寫出函數g(x)的解析式;
(2)當0<a<1時,解關于x的不等式2f(x)+g(x)>1;
(3)若對x∈[a+2,a+3]總有|f(x)-g(x)|≤1,試確定a的取值范圍.
分析:本題考查的是函數的圖象與圖象變化問題.在解答時,
對(1)通過先平移再關于x軸對稱即可獲得問題的解答;
對(2)將函數f(x)和g(x)的解析式代入不等式化簡即可獲得有關x的對數不等式,注意真數大于零即可獲得問題的解答;
對(3)結合函數f(x)和g(x)的解析式先將抽象的恒成立問題轉化為二次不等式的恒成立問題,即可獲得問題的解答.
解答:解:(1)由題意可知:圖象c2對應的函數解析式為:y=loga(x-a),∴圖象c3對應的函數解析式為:g(x)=-loga(x-a).
∴函數g(x)的解析式為g(x)=-loga(x-a).
(2)由題意:2f(x)+g(x)>1?2loga(x-3a)>1+loga(x-a)?
x-3a>0
(x-3a)2<a(x-a)

∴不等式的解集為:{x|3a<x<5a}.
(3)由|f(x)-g(x)|≤1在x∈[a+2,a+3]上恒成立
可得:(a+2)-3a>0?0<a<1
|loga(x-3a)+loga(x-a)|≤1?a≤(x-3a)(x-a)≤
1
a
對x∈[a+2,a+3]恒成立.
令h(x)=(x-3a)(x-a)=x2-4ax+3a2,其對稱軸x=2a∉[a+2,a+3],
故h(x)=x2-4ax+3a2在x∈[a+2,a+3]上單調遞增,
∴h(x)∈[h(a+2),h(a+3)]
∴h(x)∈[4(1-a),3(3-2a)]
3(3-2a)≤
1
a
4(1-a)≥a
,∴a∈(0,
9-
57
12
]

∴a的取值范圍是(0,
9-
57
12
]
點評:本題考查的是函數的圖象與圖象變化問題.在解答的過程當中充分體現了變換的思想、恒成立的思想、數形結合的思想以及問題轉化的思想.值得同學們體會反思.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2|lnx-1|.
(1)求函數y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xlnx
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數a的不同取值,寫出該函數的單調增區間;
(2)已知當x>0時,函數在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數的解析式;
(3)記(2)中的函數圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案