中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(14分)已知定義在上的單調函數,當時,,且對任意的實數、,有設數列滿足,且

 

   (I)求通項公式的表達式:

   (Ⅱ)令,試比較的大小,并加以證明。

解析:(I)由題意,令

      

 (Ⅱ)

      

  (1)當時,成立:

  (2)假設當時命題成立,即

       當時,

      

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x2+
2
x
+alnx(x>0)
,
(Ⅰ) 若f(x)在[1,+∞)上單調遞增,求a的取值范圍;
(Ⅱ)若定義在區間D上的函數y=f(x)對于區間D上的任意兩個值x1、x2總有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,則稱函數y=f(x)為區間D上的“凹函 數”.試證當a≤0時,f(x)為“凹函數”.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的單調遞增奇函數以f(x),若當0≤θ≤
π2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x2+
2
x
+alnx(x>0)
,
(Ⅰ) 若f(x)在[1,+∞)上單調遞增,求a的取值范圍;
(Ⅱ)若定義在區間D上的函數y=f(x)對于區間D上的任意兩個值x1、x2總有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,則稱函數y=f(x)為區間D上的“凹函 數”.試證當a≤0時,f(x)為“凹函數”.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義在R上的單調遞增奇函數以f(x),若當0≤θ≤數學公式時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年廣東省韶關市田家炳中學、乳源高級中學聯考高二(下)期中數學試卷(理科)(解析版) 題型:解答題

已知函數,
(Ⅰ) 若f(x)在[1,+∞)上單調遞增,求a的取值范圍;
(Ⅱ)若定義在區間D上的函數y=f(x)對于區間D上的任意兩個值x1、x2總有以下不等式成立,則稱函數y=f(x)為區間D上的“凹函 數”.試證當a≤0時,f(x)為“凹函數”.

查看答案和解析>>

同步練習冊答案