已知a、b表示兩條不同的直線,α、β表示兩個不同的平面,則下列命題中正確的是( )
A.若α∥β,a∥α,b∥β,則a∥b
B.若a?α,b?β,a∥b,則α∥β
C.若α∩β=a,a∥b,則b∥α或b∥β
D.若a?α,b?β,a∩b=P,則α∩β=a或α∩β=b
【答案】分析:對于A、B、C、D各項逐個加以分析:根據(jù)兩平面平行的性質(zhì)得到A錯誤;根據(jù)線面垂直的判定與性質(zhì)和線面平行、面面平行的性質(zhì),得到B、C錯誤;根據(jù)線面垂直面面垂直的性質(zhì),再結(jié)合空間平行與垂直之間的聯(lián)系,可得D正確.
解答:解:對于A,若α∥β,a?α,b?β,
說明a、b是分別在平行平面內(nèi)的直線,它們的位置關(guān)系應(yīng)該是平行或異面,故A錯;
對于B,若若a?α,b?β,a∥b,說明在平面α和平面β內(nèi)各有一條直線相互平行,但是條件并沒有指明平面α、β的位置關(guān)系,平面α、β也可能相交,故不一定α∥β,故B錯;
對于C,若α∩β=a,a∥b,說明直線b∥α或b?α或b∥β或b?β,再結(jié)合線面平行的判定定理,得到b∥α或b∥β,故C正確;
對于D,b若a?α,b?β,a∩b=P,說明在平面α,β內(nèi)的兩條直線相交于P,只說明P必在平面α和β的交線上,并不能得到α∩β=a或α∩β=b,故D不正確.
故選C.
點評:本題以空間中直線與平面之間的位置關(guān)系為載體,考查了命題的真假判斷與應(yīng)用,本題充分考查了空間想象力和對空間平行與垂直相關(guān)定理的掌握,不失為一道好題.
科目:高中數(shù)學(xué)
來源:2009年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版)
題型:解答題
(理)已知A、B是拋物線y2=4x上的相異兩點.
(1)設(shè)過點A且斜率為-1的直線l1,與過點B且斜率為1的直線l2相交于點P(4,4),求直線AB的斜率;
(2)問題(1)的條件中出現(xiàn)了這樣的幾個要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點;結(jié)論是關(guān)于直線AB的斜率的值.請你對問題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點Q(x,0).若x=5,試用線段AB中點的縱坐標(biāo)表示線段AB的長度,并求出中點的縱坐標(biāo)的取值范圍.
查看答案和解析>>