直線y=kx+b與曲線
交于A、B兩點(diǎn),記△AOB的面積為S(O是坐標(biāo)原點(diǎn)).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時,求直線AB的方程.![]()
(1)離心率
.(2)當(dāng)
時, S取到最大值1.
(3)
或
或
或
.
解析試題分析:(1)轉(zhuǎn)化成標(biāo)準(zhǔn)方程
,明確曲線為橢圓,
,進(jìn)一步得到橢圓的離心率.
(2)設(shè)點(diǎn)A的坐標(biāo)為
,點(diǎn)B的坐標(biāo)為
,由
,解得
,
將面積用b表示.
(3)由
,應(yīng)用弦長公式,得到|AB|=
,
根據(jù)O到AB的距離得到
代入上式并整理,解得k,b.
試題解析:(1)曲線的方程可化為:
,
∴此曲線為橢圓,
,
∴此橢圓的離心率
. 4分
(2)設(shè)點(diǎn)A的坐標(biāo)為
,點(diǎn)B的坐標(biāo)為
,
由
,解得
, 6分
所以![]()
當(dāng)且僅當(dāng)
時, S取到最大值1. 8分
(3)由
得
,
①
|AB|=
②
又因?yàn)镺到AB的距離
,所以
③
③代入②并整理,得![]()
解得,
,代入①式檢驗(yàn),△>0 ,
故直線AB的方程是
或
或
或
. 14分
考點(diǎn):橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,點(diǎn)到直線的距離公式,函數(shù)的最值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,
、
分別為橢圓
:![]()
的左、右兩個焦點(diǎn),
、
為兩個頂點(diǎn),已知頂點(diǎn)
到
、
兩點(diǎn)的距離之和為
.
(1)求橢圓
的方程;
(2)求橢圓
上任意一點(diǎn)
到右焦點(diǎn)
的距離的最小值;
(3)作
的平行線交橢圓
于
、
兩點(diǎn),求弦長
的最大值,并求
取最大值時
的面積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
分別是橢圓
的左,右焦點(diǎn).
(1)若
是橢圓在第一象限上一點(diǎn),且
,求
點(diǎn)坐標(biāo);(5分)
(2)設(shè)過定點(diǎn)
的直線
與橢圓交于不同兩點(diǎn)
,且
為銳角(其中
為原點(diǎn)),求直線
的斜率
的取值范圍.(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C∶
+
=1(a>b>0)過點(diǎn)(0,4),離心率為
.
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為
的直線被C所截線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xoy中,已知橢圓C:
=1(a>b≥1)的離心率e=
,且橢圓C上的點(diǎn)到點(diǎn)Q (0,3)的距離最大值為4,過點(diǎn)M(3,0)的直線交橢圓C于點(diǎn)A、B.
(1)求橢圓C的方程。
(2)設(shè)P為橢圓上一點(diǎn),且滿足
(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<
時,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在平面直角坐標(biāo)系
中,設(shè)橢圓
,其中
,過橢圓
內(nèi)一點(diǎn)![]()
的兩條直線分別與橢圓交于點(diǎn)
和
,且滿足
,
,其中
為正常數(shù). 當(dāng)點(diǎn)
恰為橢圓的右頂點(diǎn)時,對應(yīng)的
.
(1)求橢圓
的離心率;
(2)求
與
的值;
(3)當(dāng)
變化時,
是否為定值?若是,請求出此定值;若不是,請說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
經(jīng)過點(diǎn)
,且兩焦點(diǎn)與短軸的兩個端點(diǎn)的連線構(gòu)成一正方形.(12分)
(1)求橢圓
的方程;
(2)直線
與橢圓
交于
,
兩點(diǎn),若線段
的垂直平分線經(jīng)過點(diǎn)
,求![]()
(
為原點(diǎn))面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
在平面直角坐標(biāo)系
中,橢圓
的離心率為
,直線
被橢圓
截得的線段長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過原點(diǎn)的直線與橢圓
交于
兩點(diǎn)(
不是橢圓
的頂點(diǎn)).點(diǎn)
在橢圓
上,且
,直線
與
軸、
軸分別交于
兩點(diǎn).
(i)設(shè)直線
的斜率分別為
,證明存在常數(shù)
使得
,并求出
的值;
(ii)求
面積的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com