(本小題滿分12分)函數f(x)=ax2-2(a-1)x-2lnx ,a>0
(1)求函數f(x)的單調區間;
(2)對于函數圖像上的不同兩點A(x1,y1),B(x2,y2),如果在函數圖像上存在點P(x0,y0)(其中x0在x1與x2之間),使得點P處的切線l平行于直線AB,則稱AB存在“伴隨切線”,當x0=
時,又稱AB存在“中值伴隨切線”.試問:在函數f(x)的圖像上是否存在不同兩點A,B,使得AB存在“中值伴隨切線”?若存在,求出A,B的坐標;若不存在,說明理由
(1) 遞增區間是
,遞減區間是
(2)
【解析】(1)先求出函數的導數,然后根據導數知識求出函數的單調區間;(2)對于是否存在問題,先假設存在,把結論當條件,構造函數,利用導數法得出函數的單調性,再利用單調性得出不等式,推出與已知條件矛盾,得出假設不成立
解:(1)
,
,
所以:遞增區間是
,遞減區間是
;………………………………………6分
(2)假設存在不同兩點
,(不妨設
),使得
存在“中值伴隨切線”,則
,………………………………………7分
化簡得:
,即
,……………………………8分
設函數
,則
,
當
時,
,即
在
上是增函數,………………………10分
又
,所以
,即
,與上面結論矛盾,
所以在函數
的圖像上是不存在不同兩點
,使得
存在“中值伴隨切線”.12分
科目:高中數學 來源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的
、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com