中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設P是橢圓
x2
25
+
y2
16
=1
上的一點,F1、F2是焦點,若∠F1PF2=60°,則△PF1F2的面積為
16
3
3
16
3
3
分析:根據橢圓的定義,得PF1+PF2=2a=10…①,再在△F1PF2中用余弦定理,得PF12+PF22-PF1•PF2=36…②.由①②聯解,得PF1•PF2=
64
3
,最后用根據正弦定理關于面積的公式,可得△PF1F2的面積.
解答:解:∵橢圓方程是
x2
25
+
y2
16
=1

∴a2=25,b2=16.可得a=5,c2=25-16=9,即c=3.
∵P是橢圓
x2
25
+
y2
16
=1
上的一點,F1、F2是焦點,
∴根據橢圓的定義,得PF1+PF2=2a=10…①
又∵△F1PF2中,∠F1PF2=60°且F1F2=2c=6
∴根據余弦定理,得F1F22=PF12+PF22-2PF1•PF2cos60°=36
即PF12+PF22-PF1•PF2=36…②
∴①②聯解,得PF1•PF2=
64
3

根據正弦定理,得△PF1F2的面積為:S=
1
2
PF1•PF2sin60°=
16
3
3

故答案為:
16
3
3
點評:本題給出橢圓上一點對兩個焦點的張角為60度,求橢圓兩焦點與該點構成三角形的面積,著重考查了橢圓的簡單性質和正、余弦定理等知識點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設P是橢圓
x2
25
+
y2
16
=1
上任意一點,A和F分別是橢圓的左頂點和右焦點,則
PA
PF
+
1
4
PA
AF
的最小值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設p是橢圓
x2
25
+
y2
16
=1
上的點.若F1,F2是橢圓的兩個焦點,則|PF1|+|PF2|等于(  )
A、4B、5C、8D、10

查看答案和解析>>

科目:高中數學 來源: 題型:

設P是橢圓
x2
25
+
y2
9
=1
上一點,M、N分別是兩圓:(x+4)2+y2=1和(x-4)2+y2=1上的點,則|PM|+|PN|的最小值與最大值的積為
96
96

查看答案和解析>>

科目:高中數學 來源: 題型:

設P是橢圓
x2
25
+
y2
16
=1上的任意一點,又點Q(0,-4),則|PQ|的最大值為
8
8

查看答案和解析>>

同步練習冊答案