如圖,四棱柱
中,
平面
,底面
是邊長(zhǎng)為1的正方形,側(cè)棱
,
![]()
![]()
(Ⅰ)證明:
;
(Ⅱ)若棱
上存在一點(diǎn)
,使得
,
當(dāng)二面角
的大小為
時(shí),求實(shí)數(shù)
的值.
以
所在直線分別為
軸,
軸,
軸建系
(Ⅱ)
.
【解析】
試題分析:(I)(Ⅰ)連接BD交AC于點(diǎn)O
∵四邊形ABCD是正方形∴AC⊥BD
又∵AD1⊥平面ABCD,AC?平面ABCD
∴AC⊥A1D,A1D∩BD=D∴AC⊥平面A1BD,A1B?平面A1BD
∴AC⊥A1B。
以
所在直線分別為
軸,
軸,
軸建系
(Ⅱ)∵
∴
,設(shè)平面
的一個(gè)法向量為
,![]()
,
令
則
,
,
∴
6分
設(shè)平面
的一個(gè)法向量為
,![]()
∴
8分
10分
∴
12分
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問(wèn)題的一個(gè)基本思路。注意運(yùn)用轉(zhuǎn)化與化歸思想,將空間問(wèn)題轉(zhuǎn)化成平面問(wèn)題。本題利用空間向量知識(shí)解答,關(guān)鍵點(diǎn)是建立適當(dāng)?shù)乜臻g直角坐標(biāo)系。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆甘肅省蘭州一中高三第三次模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
如圖,四棱柱
中,
平面
,底面
是邊長(zhǎng)為
的正方形,側(cè)棱
.![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省泉州市畢業(yè)班(第二輪)質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,四棱柱
中,
平面
.
![]()
(Ⅰ)從下列①②③三個(gè)條件中選擇一個(gè)做為
的充分條件,并給予證明;
①
,②
;③
是平行四邊形.
(Ⅱ)設(shè)四棱柱
的所有棱長(zhǎng)都為1,且
為銳角,求平面
與平面
所成銳二面角
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三第七次階段復(fù)習(xí)達(dá)標(biāo)檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,四棱柱
中,
平面
,底面
是邊長(zhǎng)為1的正方形,側(cè)棱
,
(Ⅰ)證明:
;
(Ⅱ)若棱
上存在一點(diǎn)
,使得
,
當(dāng)二面角
的大小為
時(shí),求實(shí)數(shù)
的值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省高三第三次模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
如圖,四棱柱
中,
平面
,底面
是邊長(zhǎng)為
的正方形,側(cè)棱
.
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com