設(shè)函數(shù)![]()
(1)求
的單調(diào)區(qū)間;
(2)若關(guān)于
的方程
在區(qū)間
上有唯一實(shí)根,求實(shí)數(shù)
的取值范圍.
(1)
的單調(diào)增區(qū)間是
單調(diào)遞減區(qū)間是![]()
(2)![]()
解析試題分析:(1)函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/02/a/jq0qc1.png" style="vertical-align:middle;" /> ![]()
當(dāng)
時(shí),
當(dāng)
時(shí),
故
的單調(diào)增區(qū)間是
單調(diào)遞減區(qū)間是![]()
(2)由
得:
令
則
時(shí),
故
在
上遞減,在
上遞增,
要使方程
在區(qū)間
上只有一個(gè)實(shí)數(shù)根,
則必須且只需
或
或
解之得
或![]()
所以![]()
考點(diǎn):應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,方程根的討論方法。
點(diǎn)評(píng):中檔題,在給定區(qū)間,導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù),導(dǎo)數(shù)非正,函數(shù)為減函數(shù)。涉及方程根的討論問題,往往通過研究函數(shù)的單調(diào)性,最值等,明確函數(shù)圖象的大致形態(tài),確定出方程根的情況。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
=x+ax2+blnx,曲線y =
過P(1,0),且在P點(diǎn)處的切斜線率為2.
(1)求a,b的值;
(2)證明:
≤2x-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(其中
).
(1)求
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間
上為增函數(shù),求
的取值范圍;
(3)設(shè)函數(shù)
,當(dāng)
時(shí),若存在
,對任意的
,總有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若曲線
在
和
處的切線互相平行,求
的值及函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對任意
,均存在
,使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
為常數(shù),
是自然對數(shù)的底數(shù)),曲線
在點(diǎn)
處的切線與
軸平行.
(Ⅰ)求
的值;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)設(shè)
,其中
為
的導(dǎo)函數(shù).證明:對任意
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求曲線
在點(diǎn)
處的切線方程;
(2)求
的單調(diào)區(qū)間.
(3)設(shè)
,如果過點(diǎn)
可作曲線
的三條切線,證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x3-12x+5,x∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有三個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com