中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

)設為奇函數,為常數.

(1)求的值;

(2)判斷在區間(1,+∞)內的單調性,并證明你的判斷正確;

(3)若對于區間 [3,4]上的每一個的值,不等式>恒成立,求實數的取值范圍.

 

【答案】

(1)(2)在(1,+∞)上是增函數(3)

【解析】

試題分析:解:(1)∵為奇函數,

對于定義域中任意實數恒成立,

    2分

 ∴ ∴

對于定義域中任意實數恒成立

不恒為0,∴ ∴   4分

不符題意

   5分

(2)由(1)得

設1<x1x2,則

fx1)-fx2)=log-log=log

=log  7分

∵  1<x1x2,∴  x2x1>0,

∴ (x1x2-1)+(x2x1)>(x1x2-1)-(x2x1)>0

>1.   9分

∴ fx1)-fx2)<0即fx1)<fx2),在(1,+∞)上是增函數  10分

(3)由(1),不等式>可化為,即

由題意得對于區間[3,4]上的每一個的值,恒成立  2分

,則區間[3,4]上為增函數

   ∴  15分

考點:函數性質的綜合運用

點評:解決的關鍵是對于函數奇偶性和單調性的靈活運用,以及利用分離參數的思想求解函數的最值得到范圍。屬于中檔題。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(09年山東蒼山期末文)(14分)設為奇函數,為常數。

(1)求的值;

(2)證明:在(1,+∞)內單調遞增;

(3)若對于[3,4]上的每一個的值,不等式恒成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

為奇函數,為常數.

(1)求的值;

(2)證明在區間(1,+∞)內單調遞增;

(3) 若對于區間[3,4]上的每一個的值,不等式>恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2014屆天津市、漢沽一中高一上學期期末聯考數學試卷 題型:解答題

為奇函數,為常數.

(Ⅰ)求的值;       (Ⅱ)判斷在區間(1,+∞)的單調性,并說明理由;

(Ⅲ)若對于區間[3,4]上的每一個值,不等式>恒成立,求實數的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2013屆云南省高二上學期期末考試理科數學試卷 題型:解答題

(12分)設為奇函數,為常數。

(1)求的值;

(2)證明:在(1,+∞)內單調遞增;

(3)若對于[3,4]上的每一個的值,不等式恒成立,求實數的取值范圍。

 

查看答案和解析>>

同步練習冊答案