已知橢圓
過(guò)點(diǎn)
,且它的離心率
.直線
與橢圓
交于
、
兩點(diǎn).![]()
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)
時(shí),求證:
、
兩點(diǎn)的橫坐標(biāo)的平方和為定值;
(Ⅲ)若直線
與圓
相切,橢圓上一點(diǎn)
滿足
,求實(shí)數(shù)
的取值范圍.
(Ⅰ)
;
(Ⅱ)
,為定值.
(Ⅲ)
的取值范圍為
.
解析試題分析:(Ⅰ) 設(shè)橢圓的標(biāo)準(zhǔn)方程為![]()
由已知得:
,解得
所以橢圓的標(biāo)準(zhǔn)方程為:
4分
(Ⅱ) 由
,得
,設(shè)
,
,
則
,為定值. 9分
(Ⅲ)因?yàn)橹本
與圓
相切
所以,
把
代入
并整理得:![]()
設(shè)
,則有 ![]()
![]()
因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/b/9xtnm.png" style="vertical-align:middle;" />, 所以,![]()
又因?yàn)辄c(diǎn)
在橢圓上, 所以,![]()
. 因?yàn)?
所以
,
所以
,所以
的取值范圍為
. 16分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線與圓、橢圓的位置關(guān)系,二次函數(shù)性質(zhì)。
點(diǎn)評(píng):中檔題,涉及橢圓的題目,在近些年高考題中是屢見(jiàn)不鮮,往往涉及求標(biāo)準(zhǔn)方程,研究直線與橢圓的位置關(guān)系。求標(biāo)準(zhǔn)方程,主要考慮定義及a,b,c,e的關(guān)系,涉及直線于橢圓位置關(guān)系問(wèn)題,往往應(yīng)用韋達(dá)定理。涉及直線于圓的位置關(guān)系問(wèn)題,往往利用“特征三角形”。本題在應(yīng)用韋達(dá)定理的基礎(chǔ)上,得到參數(shù)的表達(dá)式,應(yīng)用二次函數(shù)性質(zhì)使問(wèn)題得解。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若直線
過(guò)雙曲線
的一個(gè)焦點(diǎn),且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過(guò)點(diǎn)
與
軸不平行的直線與雙曲線相交于不同的兩點(diǎn)
的垂直平分線為
,求直線
在
軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的兩個(gè)焦點(diǎn)
,
,過(guò)
且與坐標(biāo)軸不平行的直線
與橢圓交于
兩點(diǎn),如果
的周長(zhǎng)等于8。
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)
的直線
與橢圓交于不同兩點(diǎn)
,試問(wèn)在
軸上是否存在定點(diǎn)
,使
恒為定值?若存在,求出點(diǎn)
的坐標(biāo)及定值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓C:
+
=1(a>b>0)的左、右焦點(diǎn)分別為F
、F
,A是橢圓C上的一點(diǎn),AF
⊥F
F
,O是坐標(biāo)原點(diǎn),OB垂直AF
于B,且OF
=3OB.![]()
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x
+y
=t
上任意點(diǎn)M(x
,y
)處的切線交橢圓C于Q
、Q
兩點(diǎn),那么OQ
⊥OQ
”成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù))
是
上的動(dòng)點(diǎn),
點(diǎn)滿足
,
點(diǎn)的軌跡為曲線
.
(1)求
的方程;
(2)在以
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,射線
與
的異于極點(diǎn)的交點(diǎn)為
,與
的異于極點(diǎn)的交點(diǎn)為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線
,點(diǎn)
、
分別為雙曲線
的左、右焦點(diǎn),動(dòng)點(diǎn)
在
軸上方.
(1)若點(diǎn)
的坐標(biāo)為
是雙曲線的一條漸近線上的點(diǎn),求以
、
為焦點(diǎn)且經(jīng)過(guò)點(diǎn)
的橢圓的方程;
(2)若∠
,求△
的外接圓的方程;
(3)若在給定直線
上任取一點(diǎn)
,從點(diǎn)
向(2)中圓引一條切線,切點(diǎn)為
. 問(wèn)是否存在一個(gè)定點(diǎn)
,恒有
?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
△ABC的兩個(gè)頂點(diǎn)坐標(biāo)分別是B(0,6)和C(0,-6),另兩邊AB、AC的斜率的乘積是-
,求頂點(diǎn)A的軌跡方程.?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓C:
過(guò)點(diǎn)
, 且離心率
.![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)右焦點(diǎn)
的動(dòng)直線交橢圓于點(diǎn)
,設(shè)橢圓的左頂點(diǎn)為
連接
且交動(dòng)直線
于
,若以MN為直徑的圓恒過(guò)右焦點(diǎn)F,求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com