中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知拋物線到拋物線的準線距離為d1,到直線的距離為d2,則d1+d2的最小值是          
 

試題分析:點P到準線的距離等于點P到焦點F(1,0)的距離,從而d1=,設點F到直線的距離為d,則,易知d1+d2≥d,故d1+d2最小值為
點評:此類題解答策略主要有:一是根據題目條件適當選擇未知量,建立目標函數,再求函數的最值;二是利用拋物線的幾何性質進行轉化;三是根據題目條件建立多元等式,根據特點選擇適當的方法進行求解
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)如圖,在平面直坐標系中,已知橢圓,經過點,其中e為橢圓的離心率.且橢圓與直線 有且只有一個交點。

(Ⅰ)求橢圓的方程;
(Ⅱ)設不經過原點的直線與橢圓相交與AB兩點,第一象限內的點在橢圓上,直線平分線段,求:當的面積取得最大值時直線的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線:的焦點為,是拋物線上異于坐標原點的不同兩點,拋物線在點處的切線分別為,且相交于點.

(1) 求點的縱坐標; 
(2) 證明:三點共線;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)過點作直線與拋物線相交于兩點,圓

(1)若拋物線在點處的切線恰好與圓相切,求直線的方程;
(2)過點分別作圓的切線試求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
已知中心在原點O,焦點在x軸上的橢圓E過點(1,),離心率為
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線xy+1=0與橢圓E相交于A、B(BA上方)兩點,問是否存在直線l,使l與橢圓相交于C、D(CD上方)兩點且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線C關于軸對稱,它的頂點在坐標原點,并且經過點
(1)求拋物線C的標準方程
(2)直線過拋物線的焦點F,與拋物線交于A、B兩點,線段AB的中點M的橫坐標為3,求弦長以及直線的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

動圓經過定點,且與直線相切。
(1)求圓心的軌跡方程;
(2)直線過定點與曲線交于兩點:
①若,求直線的方程;
②若點始終在以為直徑的圓內,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題12分)
已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是橢圓上的一動點,且與橢圓長軸兩頂點連線的斜率之積最小值為,則橢圓離心率為
A. B.C.D.

查看答案和解析>>

同步練習冊答案