已知函數(shù)

.

.
(I)當(dāng)

時,求曲線

在

處的切線方程(

);
(II)求函數(shù)

的單調(diào)區(qū)間.
解:(I)當(dāng)

時,

,

, ………………………2分
所以

,

, ………………………4分
所以曲線

在

處的切線方程為

.………………………5分
(II)函數(shù)

的定義域為


,…………………………6分
①當(dāng)

時,

,在

上

,在

上

所以

在

上單調(diào)遞增,在

上遞減; …………………………8分
②當(dāng)

時,在

和

上

,在

上

所以

在

和

上單調(diào)遞增,在

上遞減;………………………10分
③當(dāng)

時,在

上

且僅有

,
所以

在

上單調(diào)遞增; …………………………12分
④當(dāng)

時,在

和

上

,在

上

所以

在

和

上單調(diào)遞增,在

上遞減……………………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(14分)已知函數(shù)

,
(1)當(dāng)t=1時,求曲線

處的切線方程;
(2)當(dāng)t≠0時,求的單調(diào)區(qū)間;
(3)證明:對任意的

在區(qū)間(0,1)內(nèi)均存在零點。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
已知函數(shù)

的減區(qū)間是

.
⑴試求

、

的值;
⑵求過點

且與曲線

相切的切線方程;
⑶過點

是否存在與曲線

相切的3條切線,若存在,求實數(shù)t的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知二次函數(shù)f(x)=ax2+bx+c的導(dǎo)數(shù)為f′(x),f′(0)>0,對于任意實數(shù)x都有f(x)≥0,則的最小值為( )
A.3 B. C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)

分別在

處取得極小值、極大值.

平面上點

的坐標(biāo)分別為

、

,該平面上動點

滿足

,點

是點

關(guān)于直線

的對稱點,.求
(Ⅰ)求點

的坐標(biāo);
(Ⅱ)求動點

的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本小題滿分12分)
函數(shù)

的圖像如圖所示。

(1)若函數(shù)

在

處的切線方程為

求函數(shù)

的解析式
(2)在(1)的條件下,是否存在實數(shù)

,使得

的圖像與

的圖像有且只有三個不同的交點?若存在,求出

的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)


>0)
(1)若

的一個極值點,求

的值;
(2)求證:當(dāng)0<

上是增函數(shù);
(3)若對任意的

總存在

>

成立,求實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分10分)
已知函數(shù)


.
(I)求

的單調(diào)區(qū)間;
(II)設(shè)

,若對任意

,均存在

,使得

,求

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
. (本小題滿分12分)
已知函數(shù)

的圖象過點P( 1,2),且在點P處的切線與直線x-3y=0垂直.
(2) 若

,試求函數(shù)f(x)的單調(diào)區(qū)間;
(3) 若a>0,b>0且(

,m),(n,

)是f(x)的單調(diào)遞

增區(qū)間,試求n-m-2c的范圍
查看答案和解析>>