橢圓
與
軸負半軸交于點
,
為橢圓第一象限上的點,直線
交橢圓于另一點
,橢圓左焦點為
,連接
交
于點D。
(1)如果
,求橢圓的離心率;
(2)在(1)的條件下,若直線
的傾斜角為
且△ABC的面積為
,求橢圓的標準方程。
科目:高中數學 來源: 題型:解答題
如圖,圓
與離心率為
的橢圓
(
)相切于點
.![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)過點
引兩條互相垂直的兩直線
、
與兩曲線分別交于點
、
與點
、
(均不重合).
(ⅰ)若
為橢圓上任一點,記點
到兩直線的距離分別為
、
,求
的最大值;
(ⅱ)若
,求
與
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的中心在原點,焦點在
軸上.若橢圓上的點
到焦點
、
的距離之和等于4.
(1)寫出橢圓
的方程和焦點坐標;
(2)過點
的直線與橢圓交于兩點
、
,當
的面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設圓C與兩圓
,
中的一個內切,另一個外切.
(1)求C的圓心軌跡L的方程;
(2)設直線l是圓O:
在P(x0,y0)(x0y0 ≠ 0)處的切線,且P在圓上,l與軌跡L相交不同的A,B兩點,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知離心率為
的橢圓
上的點到左焦點
的最長距離為
.![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的左焦點
任作一條與兩坐標軸都不垂直的弦
,若點
在
軸上,且使得
為
的一條內角平分線,則稱點
為該橢圓的“左特征點”,求橢圓的“左特征點”
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
,
,圓
,一動圓在
軸右側與
軸相切,同時與圓
相外切,此動圓的圓心軌跡為曲線C,曲線E是以
,
為焦點的橢圓。
(1)求曲線C的方程;
(2)設曲線C與曲線E相交于第一象限點P,且
,求曲線E的標準方程;
(3)在(1)、(2)的條件下,直線
與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線
的極坐標方程是
,以極點為原點,極軸為
軸正方向建立平面直角坐標系,直線的參數方程是:
(為參數).
(Ⅰ)求曲線
的直角坐標方程;
(Ⅱ)設直線與曲線
交于
,
兩點,點
的直角坐標為
,若
,求直線的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知兩定點E(-2,0),F(2,0),動點P滿足
,由點P向x軸作垂線段PQ,垂足為Q,點M滿足
,點M的軌跡為C.
(1)求曲線C的方程
(2)過點D(0,-2)作直線
與曲線C交于A、B兩點,點N滿足![]()
(O為原點),求四邊形OANB面積的最大值,并求此時的直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com