中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)

已知雙曲線的右焦點為,過點的動直線與雙曲線相交于兩點,點的坐標是

(I)證明為常數;

(II)若動點滿足(其中為坐標原點),求點的軌跡方程.

 

【答案】

(I)為常數

(II)點的軌跡方程是

【解析】解:由條件知,設

(I)當軸垂直時,可設點的坐標分別為

此時

不與軸垂直時,設直線的方程是

代入,有

是上述方程的兩個實根,所以

于是

綜上所述,為常數

(II)解法一:設,則

,由得:

于是的中點坐標為

不與軸垂直時,,即

又因為兩點在雙曲線上,所以,兩式相減得

,即

代入上式,化簡得

軸垂直時,,求得,也滿足上述方程.

所以點的軌跡方程是

解法二:同解法一得……………………………………①

不與軸垂直時,由(I) 有.…………………②

.………………………③

由①②③得.…………………………………………………④

.……………………………………………………………………⑤

時,,由④⑤得,,將其代入⑤有

.整理得

時,點的坐標為,滿足上述方程.

軸垂直時,,求得,也滿足上述方程.

故點的軌跡方程是

 

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案