如圖,圓
與圓
交于
兩點,以
為切點作兩圓的切線分別交圓
和圓
于
兩點,延長
交圓
于點
,延長
交圓
于點
.已知
.![]()
(1)求
的長;
(2)求
.
(1)
;(2)
.
解析試題分析:本題主要考查弦切角定理、三角形相似、切割線定理等基礎(chǔ)知識,考查學(xué)生的邏輯推理能力、分析問題解決問題的能力.第一問,由于AC、AD分別是圓N、圓M的切線,所以利用弦切角定理,得到
,
,所以相似三角形的判定,得△
∽△
,所以可得到邊的比例關(guān)系,從而求出邊長;第二問,根據(jù)切割線定理,得到2組關(guān)系式,2個式子相除得到一個等式,再結(jié)合第一問的結(jié)論,解方程,得到
的值.
試題解析:(1)根據(jù)弦切角定理,知
,
,
∴△
∽△
,則
,
故
. 5分
(2)根據(jù)切割線定理,知
,
,
兩式相除,得
(*)
由△
∽△
,得
,
,
又
,由(*)得
. 10分
考點:弦切角定理、三角形相似、切割線定理.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點E,AB=2AC
(1)求證:BE=2AD;
(2)當(dāng)AC=3,EC=6時,求AD的長.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,AE=AC, DE交AB于點F.求證:△PDF∽△POC.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點D,E、F分別為弦AB與弦AC上的點,且BC·AE=DC·AF,B、E、F、C四點共圓.![]()
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B、E、F、C四點的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
如下圖所示,在梯形ABCD中,AD∥BC,BD、AC相交于O,過O的直線分別交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,則EF=________.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com