中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知數列{an}單調遞增,且各項非負,對于正整數K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的項,則稱數列{an}為“K項可減數列”.

(1)已知數列{an}是首項為2,公比為2的等比數列,且數列{bn-2}是“K項可減數列”,試確定K的最大值.

(2)求證:若數列{an}是“K項可減數列”,則其前n項的和

(3)已知{an}是各項非負的遞增數列,寫出⑵的逆命題,判斷該逆命題的真假,并說明理由.

答案:
解析:

  解:(1)設,則,易得

  ,即數列一定是“2項可減數列”,但因為

  ,所以的最大值為2.

  (2)因為數列是“項可減數列”,所以必定是數列中的項,而是遞增數列,故,所以必有

  ,則

  

  所以,即

  又由定義知,數列也是“項可減數列”

  所以

  (3)(2)的逆命題為:已知數列為各項非負的遞增數列,若其前項的和滿足,則該數列一定是“項可減數列”,該逆命題為真命題.

  理由如下:因為,所以當時,,兩式相減,得,即 ()

  則當≥3時,有()

  由()-(),得,又,所以,故數列是首項為0的遞增等差數列.

  設公差為,則,對于任意的,因為,所以仍是中的項,故數列是“項可減數列”.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•鹽城二模)已知數列{an}單調遞增,且各項非負,對于正整數K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的項,則稱數列{an}為“K項可減數列”.
(1)已知數列{an}是首項為2,公比為2的等比數列,且數列{an-2}是“K項可減數列”,試確定K的最大值;
(2)求證:若數列{an}是“K項可減數列”,則其前n項的和Sn=
n2
an(n=1,2,…,K)

(3)已知{an}是各項非負的遞增數列,寫出(2)的逆命題,判斷該逆命題的真假,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}單調遞增,且各項非負,對于正整數K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的項,則稱數列{an}為“K項可減數列”.
(1)已知數列{an}是首項為2,公比為2的等比數列,且數列{an-2}是“K項可減數列”,試確定K的最大值;
(2)求證:若數列{an}是“K項可減數列”,則其前n項的和數學公式
(3)已知{an}是各項非負的遞增數列,寫出(2)的逆命題,判斷該逆命題的真假,并說明理由.

查看答案和解析>>

科目:高中數學 來源:鹽城二模 題型:解答題

已知數列{an}單調遞增,且各項非負,對于正整數K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的項,則稱數列{an}為“K項可減數列”.
(1)已知數列{an}是首項為2,公比為2的等比數列,且數列{an-2}是“K項可減數列”,試確定K的最大值;
(2)求證:若數列{an}是“K項可減數列”,則其前n項的和Sn=
n
2
an(n=1,2,…,K)

(3)已知{an}是各項非負的遞增數列,寫出(2)的逆命題,判斷該逆命題的真假,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年江蘇省鹽城市高考數學二模試卷(解析版) 題型:解答題

已知數列{an}單調遞增,且各項非負,對于正整數K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的項,則稱數列{an}為“K項可減數列”.
(1)已知數列{an}是首項為2,公比為2的等比數列,且數列{an-2}是“K項可減數列”,試確定K的最大值;
(2)求證:若數列{an}是“K項可減數列”,則其前n項的和
(3)已知{an}是各項非負的遞增數列,寫出(2)的逆命題,判斷該逆命題的真假,并說明理由.

查看答案和解析>>

同步練習冊答案