中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2013•金山區一模)若函數y=f(x) (x∈R)滿足:f(x+2)=f(x),且x∈[-1,1]時,f(x)=|x|,函數y=g(x)是定義在R上的奇函數,且x∈(0,+∞)時,g(x)=log 3x,則函數y=f(x)的圖象與函數y=g(x)的圖象的交點個數為
4
4
分析:函數f(x)滿足f(x+2)=f(x)知f(x)是周期函數,當x∈[-1,1]時,f(x)=|x|,可以畫出f(x)的圖象;又函數g(x)是R上的奇函數,且x∈(0,+∞),g(x)=log 3x,討論x>0,x=0,x<0時,f(x)與g(x)圖象交點的情況.
解答:解:函數y=f(x) (x∈R)滿足:f(x+2)=f(x),
∴f(x)是以2為周期的函數;
當x∈[-1,1]時,f(x)=|x|,可以畫出f(x)的圖象如下;
又函數y=g(x)是定義在R上的奇函數,且x∈(0,+∞)時,g(x)=log 3x,
∵x=3時,g(3)=1,∴當x>0時,f(x)與g(x)的圖象有兩個交點;
當x=0時,f(0)=g(0)=0,∴f(x)與g(x)的圖象有一個交點;
當x<0時,g(x)是R上的奇函數,
∴g(x)=-g(-x)=-log3(-x)=log3
1
-x
,與y=f(x)的圖象有一個交點;
如圖所示:所以,函數y=f(x)與y=g(x)的圖象的交點有4個.
故答案為:4.
點評:本題考查了函數的周期性,奇偶性,對數函數以及函數圖象的綜合應用,是一個容易出錯的題目.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•金山區一模)若復數(1+2i)(1+ai)是純虛數,則實數a的值是
1
2
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•金山區一模)計算極限:
lim
n→∞
(
2n2-2
n2+n+1
)
=
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•金山區一模)已知函數f(x)=sin(2x+
π
3
)+sin(2x-
π
3
)+
3
cos2x-m
,若f(x)的最大值為1.
(1)求m的值,并求f(x)的單調遞增區間;
(2)在△ABC中,角A、B、C的對邊a、b、c,若f(B)=
3
-1
,且
3
a=b+c
,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•金山區一模)若
1
a
1
b
<0
,則下列結論不正確的是( 。

查看答案和解析>>

同步練習冊答案