已知橢圓M:
=1(a>b>0)的短半軸長b=1,且橢圓上一點與橢圓的兩個焦點構成的三角形的周長為6+4
.
(1)求橢圓M的方程;
(2)設直線l:x=my+t與橢圓M交于A,B兩點,若以AB為直徑的圓經過橢圓的右頂點C,求t的值.
科目:高中數學 來源: 題型:解答題
平面內與兩定點
、
(
)連線的斜率之積等于非零常數m的點的軌跡,加上
、
兩點所成的曲線C可以是圓、橢圓或雙曲線.求曲線C的方程,并討論C的形狀與m值得關系.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設動點P(x,y)(x≥0)到定點F
的距離比到y軸的距離大
.記點P的軌跡為曲線C.
(1)求點P的軌跡方程;
(2)設圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M在y軸上截得的弦,當M運動時弦長BD是否為定值?說明理由;
(3)過F
作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形GRHS面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設A,B分別是直線y=
x和y=-
x上的動點,且|AB|=
,設O為坐標原點,動點P滿足
=
+
.
(1)求點P的軌跡方程;
(2)過點(
,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點P的軌跡的相交弦分別為CD,EF,設CD,EF的弦中點分別為M,N,求證:直線MN恒過一個定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知線段AB的兩個端點A,B分別在x軸、y軸上滑動,|AB|=3,點M滿足2
=
.
(1)求動點M的軌跡E的方程.
(2)若曲線E的所有弦都不能被直線l:y=k(x-1)垂直平分,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓
的離心率為
,且過點
直線
與橢圓M交于A、C兩點,直線
與橢圓M交于B、D兩點,四邊形ABCD是平行四邊形
(1)求橢圓M的方程;
(2)求證:平行四邊形ABCD的對角線AC和BD相交于原點O;
(3)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,經過點(0,
)且斜率為k的直線l與橢圓
+y2=1有兩個不同的交點P和Q.
(1)求k的取值范圍;
(2)設橢圓與x軸正半軸、y軸正半軸的交點分別為A,B,是否存在常數k,使得向量
+
與
共線?如果存在,求k的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com