已知f0(x)=x·ex,f1(x)=
(x),f2(x)=
(x),…,fn(x)=
(x)(n∈N*).
(Ⅰ)請寫出fn(x)的表達式(不需證明);
(Ⅱ)設(shè)fn(x)的極小值點為Pn(xn,yn),求yn;
(Ⅲ)設(shè)gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,試求a-b的最小值.
|
解:(Ⅰ) (Ⅱ)∵ ∴當(dāng) ∴當(dāng) 即 (Ⅲ)解法一:∵ 又 ∴ 令 ∵ ∵ ∴存在 ∵ ∴當(dāng) 即 ∴ 又∵ ∴當(dāng) 解法二:∵ 又 ∴ 令 則 當(dāng) 又 ∴當(dāng) |
科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計選修數(shù)學(xué)-1-1蘇教版 蘇教版 題型:044
已知f0(x)=xn,fk(x)=
,其中k≤n(n,k∈N+).設(shè)F(x)=
f0(x2)+
f1(x2)+…+
fk(x2)+…+
fn(x2),x∈[-1,1].
(1)寫出fk(1);
(2)證明:對任意的x1,x2∈[-1,1],恒有|F(x1)-F(x2)|≤2n-1(n+2)-n-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:安徽省宣城中學(xué)2011-2012學(xué)年高二3月月考數(shù)學(xué)理科試題 題型:013
已知f0(x)=sinx,f1(x)=
(x),f2(x)=
(x),…,fn+1(x)=
(x),則f2012(
)=
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:內(nèi)蒙古元寶山區(qū)一中2011屆高三第一次摸底考試?yán)砜茢?shù)學(xué)試題 題型:044
對函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時
①求f0(x)和fk(x)的解析式;
②求證:Φ(x)的各階階梯函數(shù)圖象的最高點共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:內(nèi)蒙古元寶山區(qū)一中2011屆高三第一次摸底考試文科數(shù)學(xué)試題 題型:044
對函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時
①求f0(x)和fk(x)的解析式;
②求證:Φ(x)的各階階梯函數(shù)圖象的最高點共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com