已知橢圓
的離心率為
,且過點
.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為
的直線
與橢圓相交于不同的兩點
,試問在
軸上是否存在點
,使
是與
無關的常數?若存在,求出點
的坐標;若不存在,請說明理由.
(1)橢圓方程為
。
(2)在x軸上存在點M(
), 使
是與K無關的常數.
解析試題分析:(1)∵橢圓離心率為
,
∴
,∴
. 1分
又
橢圓過點(
,1),代入橢圓方程,得
. 2分
所以
. 4分
∴橢圓方程為
,即
. 5分
(2)在x軸上存在點M
,使
是與K無關的常數. 6分
證明:假設在x軸上存在點M(m,0),使
是與k無關的常數,
∵直線L過點C(-1,0)且斜率為K,∴L方程為
,
由
得
. 7分
設
,則
8分
∵![]()
∴
9分
=![]()
=![]()
=![]()
=
10分
設常數為t,則
. 11分
整理得
對任意的k恒成立,
解得
, 12分
即在x軸上存在點M(
), 使
是與K無關的常數. 13分
考點:橢圓的標準方程及幾何性質,直線與橢圓的位置關系,平面向量的數量積。
點評:中檔題,曲線關系問題,往往通過聯立方程組,得到一元二次方程,運用韋達定理。求橢圓標準方程時,主要運用了橢圓的幾何性質,建立了a,bac的方程組。(2)作為研究
,應用韋達定理,建立了m的函數式,利用函數觀點,求得m的值,肯定存在性,使問題得解。
科目:高中數學 來源: 題型:解答題
已知圓C:
的半徑等于橢圓E:
(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內,且到直線l:y=x-
的距離為
-
,點M是直線l與圓C的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).![]()
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的離心率為
,直線
:
與以原點為圓心、以橢圓
的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設橢圓
的左焦點為
,右焦點
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點
,
線段
垂直平分線交
于點
,求點
的軌跡
的方程;
(Ⅲ)設
與
軸交于點
,不同的兩點
在
上,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
、
是橢圓![]()
的左、右焦點,且離心率
,點
為橢圓上的一個動點,
的內切圓面積的最大值為
.
(1) 求橢圓的方程;
(2) 若
是橢圓上不重合的四個點,滿足向量
與
共線,
與
共
線,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定圓
的圓心為
,動圓
過點
,且和圓
相切,動圓的圓心
的軌跡記為
.
(Ⅰ)求曲線
的方程;
(Ⅱ)若點
為曲線
上一點,試探究直線:
與曲線
是否存在交點? 若存在,求出交點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(13分)已知橢圓C:
(a>b>0)的兩個焦點分別為F1(﹣1,0),F2(1,0),且橢圓C經過點
.
(I)求橢圓C的離心率:
(II)設過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且
,求點Q的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若橢圓C:
的離心率e為
, 且橢圓C的一個焦點與拋物線y2=-12x的焦點重合.
(1) 求橢圓C的方程;
(2) 設點M(2,0), 點Q是橢圓上一點, 當|MQ|最小時, 試求點Q的坐標;
(3) 設P(m,0)為橢圓C長軸(含端點)上的一個動點, 過P點斜率為k的直線l交橢圓與
A,B兩點, 若|PA|2+|PB|2的值僅依賴于k而與m無關, 求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在
軸上,一個頂點為
,且其右焦點到直線
的距離為3.
(Ⅰ)求橢圓方程;
(Ⅱ)設直線過定點
,與橢圓交于兩個不同的點
,且滿足
.
求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的焦距為
,離心率為
,其右焦點為
,過點
作直線交橢圓于另一點
.
(Ⅰ)若
,求
外接圓的方程;
(Ⅱ)若直線
與橢圓![]()
相交于兩點
、
,且
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com