中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知定義在R上的奇函數y=f(x)滿足f(2+x)=f(2-x),當-2≤x<0時,f(x)=2x,若an=f(n)(n∈N*),則a2012=
0
0
分析:根據定義在R上的奇函數又關于某直線x=a≠0對稱,則它又是周期函數,可求得函數f(x)的周期是8,進而得到答案.
解答:解:∵f(2+x)=f(2-x),以2+x代替上式中的x得f(4+x)=f(-x),
又函數y=f(x)是定義在R上的奇函數,∴f(-x)=-f(x),f(0)=0,
∴f(4+x)=f(-x)=-f(x),
再以4+x代替上式中的x得f(8+x)=-f(4+x)=f(x),由此可知:函數f(x)是以8為周期的函數,
∴a2012=f(2012)=f(251×8+4)=f(4),而f(4)=-f(0)=0,
∴a2012=0.
故答案是0.
點評:本題綜合考查了函數的奇偶性、對稱性及周期性,深刻理解函數的以上性質是解決問題的關鍵.同時知道結論:定義在R上的奇函數又關于某直線x=a≠0對稱,則它又是周期函數.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義在R上的單調遞增奇函數以f(x),若當0≤θ≤
π2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的奇函數f(x).當x<0時,f(x)=x2+2x.
(Ⅰ)求函數f(x)的解析式;
(Ⅱ)問:是否存在實數a,b(a≠b),使f(x)在x∈[a,b]時,函數值的集合為[
1
b
1
a
]
?若存在,求出a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:大連二十三中學2011學年度高二年級期末測試試卷數學(理) 題型:選擇題

已知定義在R上的奇函數,滿足,且在區間[0,2]上是增函

數,則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數學 來源:2012屆浙江省高二下學期期末考試理科數學試卷 題型:選擇題

已知定義在R上的奇函數,滿足,且在區間[0,1]上是增函

數,若方程在區間上有四個不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義在R上的單調遞增奇函數以f(x),若當0≤θ≤數學公式時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案