設函數
定義在
上,
,導函數
,
.
(1)求
的單調區間和最小值;
(2)討論
與
的大小關系;
(3)是否存在
,使得
對任意
成立?若存在,求出
的取值范圍;若不存在,請說明理由.
科目:高中數學 來源: 題型:解答題
(2014·成都模擬)已知函數f(x)=x2+
+alnx(x>0).
(1)若f(x)在[1,+∞)上單調遞增,求a的取值范圍.
(2)若定義在區間D上的函數y=f(x)對于區間D上的任意兩個值x1,x2總有不等式
[f(x1)+f(x2)]≥f
成立,則稱函數y=f(x)為區間D上的“凹函數”.試證當a≤0時,f(x)為“凹函數”.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若函數y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數y=f(x)的極值點.已知a,b是實數,1和-1是函數f(x)=x3+ax2+bx的兩個極值點.
(1)求a和b的值;
(2)設函數g(x)的導函數g′(x)=f(x)+2,求g(x)的極值點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x2+ax+b,g(x)=ex(cx+d).若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時,f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
的圖象在點
處的切線方程為
.
(1)求實數
的值;
(2)設
.
①若
是
上的增函數,求實數
的最大值;
②是否存在點
,使得過點
的直線若能與曲線
圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等.若存在,求出點
坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com